124 research outputs found

    Near-Capacity Turbo Coded Soft-decision Aided DAPSK/Star-QAM

    No full text
    Low-complexity non-coherently detected Differential Amplitude and Phase-Shift Keying (DAPSK) schemes constitute an ideal candidate for wireless communications. In this paper, we derive the soft-output probability formulas required for the soft-decision based demodulation of DAPSK, which are then invoked for Turbo Coded (TC) transmissions. Furthermore, the achievable throughput characteristics of the family of M-ary DAPSK schemes are provided. It is shown that the proposed 4-ring based TC assisted 64-ary DAPSK scheme achieves a coding gain of about 4.2 dBs in comparison to the identical-throughput TC assisted 64-ary Differential Phase-Shift Keying (64-DPSK) scheme at a bit error ratio of 10?5

    Effects of Imperfect Reference Signal Recovery on Performance of SC and SSC Receivers over Generalized Fading Channels

    Get PDF
    This paper presents the study of the effects of imperfect reference signal recovery on the bit error rate (BER) performance of dual-branch switch-and-stay combining (SSC) and multibranch selection combining (SC) receivers in a generalized - fading channel. The average BER of binary and quaternary phase shift keying (BPSK and QPSK) is derived under the assumption that the reference carrier signal is extracted from the received modulated signal. For SSC receiver the optimal switching threshold (in a minimum BER sense) is numerically evaluated. Hereby we determine and discuss the simultaneous influence of the average signal-to-noise ratio (SNR) per bit, fading severity, product phase-locked loop (PLL) bandwidthbit duration (B_LT_b), switching threshold of SSC and diversity order of SC on BER performance. The influence of B_LT_b in different channel conditions and modulation formats is pointed out. The numerical results are confirmed by computer simulations

    Trellis code-aided high-rate differential space-time block code and enhanced uncoded space-time labeling diversity.

    Get PDF
    Master of Science in Engineering. University of KwaZulu-Natal, Durban, 2017.In this dissertation, a trellis code-aided bandwidth efficiency improvement technique for space-time block coded wireless communication systems is investigated. The application of the trellis code-aided bandwidth efficiency improvement technique to differential space-time block codes (DSTBC) results in a high-rate system called trellis code-aided DSTBC (TC-DSTBC). Such a system has not been investigated in open literature to date. Hence, in this dissertation, the mathematical models and design methodology for TC-DSTBC are presented. The two transmit antenna TC-DSTBC system transmits data by using a transmission matrix similar to the conventional DSTBC. The fundamental idea of TC-DSTBC is to use a dynamic mapping rule rather than a fixed one to map additional bits onto the expanded space-time block code (STBC) prior to differential encoding, hence, the additional bits-to-STBC mapping technique, which incorporates trellis coding is proposed for square M-ary quadrature amplitude modulation (M-QAM) in order to enhance the bandwidth efficiency without sacrificing the error performance of the conventional DSTBC. The comparison of bandwidth efficiency between TC-DSTBC and the conventional DSTBC show that TC-DSTBC achieves a minimum of 12.5% and 8.3% increase in bandwidth efficiency for 16-QAM and 64-QAM, respectively. Furthermore, the Monte Carlo simulation results show that, at high signal-to-noise ratios (SNR), the four receive antenna TC- DSTBC retains the bit error rate (BER) performance of the conventional DSTBC with the same number of receive antennas under the same independent and identically distributed (i.i.d.) Rayleigh frequency-flat fading channel and additive white noise (AWGN) conditions for various square M-QAM modulation orders and numbers of additional bits. Motivated by the bandwidth efficiency advantage of TC-DSTBC over the conventional DSTBC, the trellis code-aided bandwidth efficiency improvement technique is extended to the recently developed uncoded space-time labeling diversity (USTLD) system, where a new system referred to as enhanced uncoded space-time labeling diversity (E-USTLD) is proposed. In addition to this, a tight closed form lower-bound is derived to predict the average BER of the E-USTLD system over i.i.d. Rayleigh frequency-flat fading channels at high SNR. The Monte Carlo simulation results validate that the more bandwidth efficient four receive antenna E-USTLD system at the minimum retains the BER performance of the conventional four receive antenna USTLD system under the same fading channel and AWGN conditions for various square M-QAM modulation orders. The bandwidth efficiency improvement for TC-DSTBC and E-USTLD is achieved at the cost of a much higher computational complexity at the receiver due to use of the high-complexity Viterbi algorithm (VA)-based detector. Therefore, the low-complexity (LC) near-maximum-likelihood (near-ML) detection scheme proposed for the conventional USTLD is extended to the E-USTLD detector in order to reduce the magnitude of increase in the computational complexity. The Monte Carlo simulation results show that E-USTLD with a VA-based detector that implements LC near-ML detection attains near optimal BER performance

    Differential Coding for MIMO and Cooperative Communications

    Get PDF
    Multiple-input multiple-output (MIMO) wireless communication systems have been studied a lot in the last ten years. They have many promising features like array gain, diversity gain, spatial multiplexing gain, interference reduction, and improved capacity as compared to a single-input single-output (SISO) systems. However, the increasing demand of high data-rate in current wireless communications systems motivated us to investigate new rate-efficient channel coding techniques. In this dissertation, we study differential modulation for MIMO systems. Differential modulation is useful since it avoids the need of channel estimation by the receiver and saves valuable bandwidth with a slight symbol error-rate (SER) performance loss. The effect of channel correlation over differential MIMO system has not been studied in detail so far. It has been shown in the literature that a linear memoryless precoder can be used to improve the performance of coherent MIMO system over correlated channels. In this work, we implement precoded differential modulation for non-orthogonal and orthogonal space-time blocks codes (STBCs) over arbitrarily correlated channels. We design precoders based on pair-wise error probability (PEP) and approximate SER for differential MIMO system. The carrier offsets, which result because of the movement of the receiver or transmitter and/or scatterers, and mismatch between the transmit and receive oscillators, are a big challenge for the differential MIMO system. The carrier offsets make the flat fading channel behave as a time-varying channel. Hence, the channel does not remain constant over two consecutive STBC block transmission time-intervals, which is a basic assumption for differential systems and the differential systems break down. Double-differential coding is a key technique which could be used to avoid the need of both carrier offset and channel estimation. In this work, we propose a double-differential coding for full-rank and square orthogonal space-time block codes (OSTBC) with M-PSK constellation. A suboptimal decoder for the double-differentially encoded OSTBC is obtained. We also derive a simple PEP upper bound for the double-differential OSTBC. A precoder is also designed based on the PEP upper bound for the double-differential OSTBC to make it more robust against arbitrary MIMO channel correlations. Cooperative communication has several promising features to become a main technology in future wireless communications systems. It has been shown in the literature that the cooperative communication can avoid the difficulties of implementing actual antenna array and convert the SISO system into a virtual MIMO system. In this way, cooperation between the users allows them to exploit the diversity gain and other advantages of MIMO system at a SISO wireless network. A cooperative communication system is difficult to implement in practice because it generally requires that all cooperating nodes must have the perfect knowledge of the channel gains of all the links in the network. This is infeasible in a large wireless network like cellular system. If the users are moving and there is mismatch between the transmit and receive oscillators, the resulting carrier offset may further degrade the performance of a cooperative system. In practice, it is very difficult to estimate the carrier offset perfectly over SISO links. A very small residual offset error in the data may degrade the system performance substantially. Hence, to exploit the diversity in a cooperative system in the presence of carrier offsets is a big challenge. In this dissertation, we propose double-differential modulation for cooperative communication systems to avoid the need of the knowledge of carrier offset and channel gain at the cooperating nodes (relays) and the destination. We derive few useful SER/bit error rate (BER) expressions for double-differential cooperative communication systems using decode-and-forward and amplify-and-forward protocols. Based on these SER/BER expressions, power allocations are also proposed to further improve the performance of these systems. List of papers included in the dissertation This dissertation is based on the following five papers, referred to in the text by letters (A-E)
    corecore