3,085 research outputs found

    Time Distortion Anonymization for the Publication of Mobility Data with High Utility

    Get PDF
    An increasing amount of mobility data is being collected every day by different means, such as mobile applications or crowd-sensing campaigns. This data is sometimes published after the application of simple anonymization techniques (e.g., putting an identifier instead of the users' names), which might lead to severe threats to the privacy of the participating users. Literature contains more sophisticated anonymization techniques, often based on adding noise to the spatial data. However, these techniques either compromise the privacy if the added noise is too little or the utility of the data if the added noise is too strong. We investigate in this paper an alternative solution, which builds on time distortion instead of spatial distortion. Specifically, our contribution lies in (1) the introduction of the concept of time distortion to anonymize mobility datasets (2) Promesse, a protection mechanism implementing this concept (3) a practical study of Promesse compared to two representative spatial distortion mechanisms, namely Wait For Me, which enforces k-anonymity, and Geo-Indistinguishability, which enforces differential privacy. We evaluate our mechanism practically using three real-life datasets. Our results show that time distortion reduces the number of points of interest that can be retrieved by an adversary to under 3 %, while the introduced spatial error is almost null and the distortion introduced on the results of range queries is kept under 13 % on average.Comment: in 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Aug 2015, Helsinki, Finlan

    Privacy-Preserving Trajectory Data Publishing via Differential Privacy

    Get PDF
    Over the past decade, the collection of data by individuals, businesses and government agencies has increased tremendously. Due to the widespread of mobile computing and the advances in location-acquisition techniques, an immense amount of data concerning the mobility of moving objects have been generated. The movement data of an object (e.g. individual) might include specific information about the locations it visited, the time those locations were visited, or both. While it is beneficial to share data for the purpose of mining and analysis, data sharing might risk the privacy of the individuals involved in the data. Privacy-Preserving Data Publishing (PPDP) provides techniques that utilize several privacy models for the purpose of publishing useful information while preserving data privacy. The objective of this thesis is to answer the following question: How can a data owner publish trajectory data while simultaneously safeguarding the privacy of the data and maintaining its usefulness? We propose an algorithm for anonymizing and publishing trajectory data that ensures the output is differentially private while maintaining high utility and scalability. Our solution comprises a twofold approach. First, we generalize trajectories by generalizing and then partitioning the timestamps at each location in a differentially private manner. Next, we add noise to the real count of the generalized trajectories according to the given privacy budget to enforce differential privacy. As a result, our approach achieves an overall epsilon-differential privacy on the output trajectory data. We perform experimental evaluation on real-life data, and demonstrate that our proposed approach can effectively answer count and range queries, as well as mining frequent sequential patterns. We also show that our algorithm is efficient w.r.t. privacy budget and number of partitions, and also scalable with increasing data size

    Location Privacy in Spatial Crowdsourcing

    Full text link
    Spatial crowdsourcing (SC) is a new platform that engages individuals in collecting and analyzing environmental, social and other spatiotemporal information. With SC, requesters outsource their spatiotemporal tasks to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. This chapter identifies privacy threats toward both workers and requesters during the two main phases of spatial crowdsourcing, tasking and reporting. Tasking is the process of identifying which tasks should be assigned to which workers. This process is handled by a spatial crowdsourcing server (SC-server). The latter phase is reporting, in which workers travel to the tasks' locations, complete the tasks and upload their reports to the SC-server. The challenge is to enable effective and efficient tasking as well as reporting in SC without disclosing the actual locations of workers (at least until they agree to perform a task) and the tasks themselves (at least to workers who are not assigned to those tasks). This chapter aims to provide an overview of the state-of-the-art in protecting users' location privacy in spatial crowdsourcing. We provide a comparative study of a diverse set of solutions in terms of task publishing modes (push vs. pull), problem focuses (tasking and reporting), threats (server, requester and worker), and underlying technical approaches (from pseudonymity, cloaking, and perturbation to exchange-based and encryption-based techniques). The strengths and drawbacks of the techniques are highlighted, leading to a discussion of open problems and future work

    SoK: differentially private publication of trajectory data

    Get PDF
    Trajectory analysis holds many promises, from improvements in traffic management to routing advice or infrastructure development. However, learning users’ paths is extremely privacy-invasive. Therefore, there is a necessity to protect trajectories such that we preserve the global properties, useful for analysis, while specific and private information of individuals remains inaccessible. Trajectories, however, are difficult to protect, since they are sequential, highly dimensional, correlated, bound to geophysical restrictions, and easily mapped to semantic points of interest. This paper aims to establish a systematic framework on protective masking measures for trajectory databases with differentially private (DP) guarantees, including also utility properties, derived from ideas and limitations of existing proposals. To reach this goal, we systematize the utility metrics used throughout the literature, deeply analyze the DP granularity notions, explore and elaborate on the state of the art on privacy-enhancing mechanisms and their problems, and expose the main limitations of DP notions in the context of trajectories.We would like to thank the reviewers and shepherd for their useful comments and suggestions in the improvement of this paper. Javier Parra-Arnau is the recipient of a “Ramón y Cajal” fellowship funded by the Spanish Ministry of Science and Innovation. This work also received support from “la Caixa” Foundation (fellowship code LCF/BQ/PR20/11770009), the European Union’s H2020 program (Marie SkƂodowska-Curie grant agreement № 847648) from the Government of Spain under the project “COMPROMISE” (PID2020-113795RB-C31/AEI/10.13039/501100011033), and from the BMBF project “PROPOLIS” (16KIS1393K). The authors at KIT are supported by KASTEL Security Research Labs (Topic 46.23 of the Helmholtz Association) and Germany’s Excellence Strategy (EXC 2050/1 ‘CeTI’; ID 390696704).Peer ReviewedPostprint (published version
    • 

    corecore