150 research outputs found

    Fault-Tolerant Secure Data Aggregation Schemes in Smart Grids: Techniques, Design Challenges, and Future Trends

    Get PDF
    Secure data aggregation is an important process that enables a smart meter to perform efficiently and accurately. However, the fault tolerance and privacy of the user data are the most serious concerns in this process. While the security issues of Smart Grids are extensively studied, these two issues have been ignored so far. Therefore, in this paper, we present a comprehensive survey of fault-tolerant and differential privacy schemes for the Smart Gird. We selected papers from 2010 to 2021 and studied the schemes that are specifically related to fault tolerance and differential privacy. We divided all existing schemes based on the security properties, performance evaluation, and security attacks. We provide a comparative analysis for each scheme based on the cryptographic approach used. One of the drawbacks of existing surveys on the Smart Grid is that they have not discussed fault tolerance and differential privacy as a major area and consider them only as a part of privacy preservation schemes. On the basis of our work, we identified further research areas that can be explored

    E-DPNCT: An Enhanced Attack Resilient Differential Privacy Model For Smart Grids Using Split Noise Cancellation

    Full text link
    High frequency reporting of energy utilization data in smart grids can be used to infer sensitive information regarding the consumer's life style. We propose A Differential Private Noise Cancellation Model for Load Monitoring and Billing for Smart Meters (DPNCT) to protect the privacy of the smart grid data using noise cancellation protocol with a master smart meter to provide accurate billing and load monitoring. Next, we evaluate the performance of DPNCT under various privacy attacks such as filtering attack, negative noise cancellation attack and collusion attack. The DPNCT model relies on trusted master smart meters and is vulnerable to collusion attack where adversary collude with malicious smart meters in order to get private information of other smart meters. In this paper, we propose an Enhanced DPNCT (E-DPNCT) where we use multiple master smart meters for split noise at each instant in time t for better protection against collusion attack. We did extensive comparison of our E-DPNCT model with state of the art attack resistant privacy preserving models such as EPIC for collision attack and with Barbosa Differentialy Private (BDP) model for filtering attack. We evaluate our E-DPNCT model with real time data which shows significant improvement in privacy attack scenarios without any compute intensive operations.Comment: 10 pages, 12 figues, 4 table

    A decentralized mechanism based on differential privacy for privacy-preserving computation in smart grid

    Get PDF
    As one of the most successful industrial realizations of Internet of Things, a smart grid is a smart IoT system that deploys widespread smart meters to capture fine-grained data on residential power usage. Unfortunately, it always suffers diverse privacy attacks, which seriously increases the risk of violating the privacy of customers. Although some solutions have been proposed to address this privacy issue, most of them mainly rely on a trusted party and focus on the sanitization of metering masurements. Moreover, these solutions are vulnerable to advanced attacks. In this paper, we propose a decentralized mechanism for privacy-preserving computation in smart grid called DDP, which leaverages the differential privacy and extends the data sanitization from the value domain to the time domain. Specifically, we inject Laplace noise to the measurements at the end of each customer in a distributed manner, and then use a random permutation algorithm to shuffle the power measurement sequence, thereby enforcing differential privacy after aggregation and preventing the sensitive power usage mode informaton of the customers from being inferred by other parties. Extensive experiments demonstrate that DDP shows an outstanding performance in terms of privacy from the non-intrusive load monitoring (NILM) attacks and utility by using two different error analysis

    BSCSML: Design of an Efficient Bioinspired Security &Privacy Model for Cyber Physical System using Machine Learning

    Get PDF
    With the increasing prevalence of Smart Grid Cyber Physical Systems with Advanced Metering Infrastructure (SG CPS AMI), securing their internal components has become one of the paramount concerns. Traditional security mechanisms have proven to be insufficient in defending against sophisticated attacks. Bioinspired security and privacy models have emerged as promising solutions due to their stochastic solutions. This paper proposes a novel bio-inspired security and privacy model for SG CPS AMI that utilizes machine learning to strengthen their security levels. The proposed model is inspired by the hybrid Grey Wolf Teacher Learner based Optimizer (GWTLbO) Method’s ability to detect and respond to threats in real-time deployments. The GWTLbO Model also ensures higher privacy by selecting optimal methods between k-privacy, t-closeness & l-diversity depending upon contextual requirements. This study improves system accuracy and efficiency under diverse attacks using machine learning techniques. The method uses supervised learning to teach the model to recognize known attack trends and uncontrolled learning to spot unknown attacks. Our model was tested using real-time IoT device data samples. The model identified Zero-Day Attacks, Meter Bypass, Flash Image Manipulation, and Buffer-level attacks. The proposed model detects and responds to attacks with high accuracy and low false-positive rates. In real-time operations, the proposed model can handle huge volumes of data efficiently. The bioinspired security and privacy model secures CPS efficiently and is scalable for various cases. Machine learning techniques can improve the security and secrecy of these systems and revolutionize defense against different attacks

    False data injection attack detection in smart grid

    Get PDF
    Smart grid is a distributed and autonomous energy delivery infrastructure that constantly monitors the operational state of its overall network using smart techniques and state estimation. State estimation is a powerful technique that is used to determine the overall operational state of the system based on a limited set of measurements collected through metering systems. Cyber-attacks pose serious risks to a smart grid state estimation that can cause disruptions and power outages resulting in huge economical losses and are therefore a big concern to a reliable national grid operation. False data injection attacks (FDIAs), engineered on the basis of the knowledge of the network configuration, are difficult to detect using the traditional data detection mechanisms. These detection schemes have been found vulnerable and failed to detect these FDIAs. FDIAs specifically target the state data and can manipulate the state measurements in such a way that these false measurements appear real to the main control systems. This research work explores the possibility of FDIA detection using state estimation in a distributed and partitioned smart grid. In order to detect FDIAs we use measurements for residual-based testing which creates an objective function; and the probability of erroneous data is determined from this residual test. In this test, a preset threshold is determined based on the prior history of the state data. FDIA cases are simulated within a smart grid considering that the Chi-square detection state estimator fails in identifying such attacks. We compute the objective function using the standard weighted least problem and then test the objective function against the value in the Chi-square table. The gain matrix and the Jacobian matrix are computed. The state variables are computed in the form of a voltage magnitude. The state variables are computed after the inception of an attack to assess these state magnitude results. Different sizes of partitioning are used to improve the overall sensitivity of the Chi-square results. Our additional estimator is based on a Kalman estimation that consists of the state prediction and state correction steps. In the first step, it obtains the state and matrix covariance prediction, and in the second step, it calculates the Kalman gain and the state and matrix covariance update steps. The set of points is created for the state vector x at a time instant t. The initial vector and covariance matrix are based on a priori knowledge of the historical estimates. A set of sigma points is estimated by the state update function. Sigma points refer to the minimal set of sampling points that are selected and transformed using nonlinear function, and the new mean and the covariance are formed out of these transformed points. The idea behind this is that it is easier to compute a Gaussian distribution than an arbitrary nonlinear function. The filter gain, the mean and the covariance are used to estimate the next state. Our simulation results show that the combination of Kalman estimation and distributed state estimation improves the overall stability index and vulnerability assessment score of the smart grid. We built a stability index table for a smart grid based on the state estimates value after the inception of an FDIA. The vulnerability assessment score of the smart grid is based on common vulnerability scoring system (CVSS) and state estimates under the influence of an FDIA. The simulations are conducted in the MATPOWER program and different electrical bus systems such as IEEE 14, 30, 39, 118 and 300 are tested. All the contributions have been published in reputable journals and conferences.Doctor of Philosoph
    • …
    corecore