6,819 research outputs found

    Differentially Private Model Selection with Penalized and Constrained Likelihood

    Full text link
    In statistical disclosure control, the goal of data analysis is twofold: The released information must provide accurate and useful statistics about the underlying population of interest, while minimizing the potential for an individual record to be identified. In recent years, the notion of differential privacy has received much attention in theoretical computer science, machine learning, and statistics. It provides a rigorous and strong notion of protection for individuals' sensitive information. A fundamental question is how to incorporate differential privacy into traditional statistical inference procedures. In this paper we study model selection in multivariate linear regression under the constraint of differential privacy. We show that model selection procedures based on penalized least squares or likelihood can be made differentially private by a combination of regularization and randomization, and propose two algorithms to do so. We show that our private procedures are consistent under essentially the same conditions as the corresponding non-private procedures. We also find that under differential privacy, the procedure becomes more sensitive to the tuning parameters. We illustrate and evaluate our method using simulation studies and two real data examples

    Private Incremental Regression

    Full text link
    Data is continuously generated by modern data sources, and a recent challenge in machine learning has been to develop techniques that perform well in an incremental (streaming) setting. In this paper, we investigate the problem of private machine learning, where as common in practice, the data is not given at once, but rather arrives incrementally over time. We introduce the problems of private incremental ERM and private incremental regression where the general goal is to always maintain a good empirical risk minimizer for the history observed under differential privacy. Our first contribution is a generic transformation of private batch ERM mechanisms into private incremental ERM mechanisms, based on a simple idea of invoking the private batch ERM procedure at some regular time intervals. We take this construction as a baseline for comparison. We then provide two mechanisms for the private incremental regression problem. Our first mechanism is based on privately constructing a noisy incremental gradient function, which is then used in a modified projected gradient procedure at every timestep. This mechanism has an excess empirical risk of ≈d\approx\sqrt{d}, where dd is the dimensionality of the data. While from the results of [Bassily et al. 2014] this bound is tight in the worst-case, we show that certain geometric properties of the input and constraint set can be used to derive significantly better results for certain interesting regression problems.Comment: To appear in PODS 201

    Differentially private simple linear regression

    Get PDF
    Economics and social science research often require analyzing datasets of sensitive personal information at fine granularity, with models fit to small subsets of the data. Unfortunately, such fine-grained analysis can easily reveal sensitive individual information. We study regression algorithms that satisfy differential privacy, a constraint which guarantees that an algorithm’s output reveals little about any individual input data record, even to an attacker with side information about the dataset. Motivated by the Opportunity Atlas, a highprofile, small-area analysis tool in economics research, we perform a thorough experimental evaluation of differentially private algorithms for simple linear regression on small datasets with tens to hundreds of records—a particularly challenging regime for differential privacy. In contrast, prior work on differentially private linear regression focused on multivariate linear regression on large datasets or asymptotic analysis. Through a range of experiments, we identify key factors that affect the relative performance of the algorithms. We find that algorithms based on robust estimators—in particular, the median-based estimator of Theil and Sen—perform best on small datasets (e.g., hundreds of datapoints), while algorithms based on Ordinary Least Squares or Gradient Descent perform better for large datasets. However, we also discuss regimes in which this general finding does not hold. Notably, the differentially private analogues of Theil–Sen (one of which was suggested in a theoretical work of Dwork and Lei) have not been studied in any prior experimental work on differentially private linear regression.Published versio

    E–stability and stability of adaptive learning in models with asymmetric information

    Get PDF
    The paper demonstrates how the E–stability principle introduced by Evans and Honkapohja [2001] can be applied to models with heterogeneous and private information in order to assess the stability of rational expectations equilibria under learning. The paper extends already known stability results for the Grossman and Stiglitz [1980] model to a more general case with many differentially informed agents and to the case where information is endogenously acquired by optimizing agents. In both cases it turns out that the rational expectations equilibrium of the model is inherently E-stable and thus locally stable under recursive least squares learning.Adaptive Learning, Eductive Stability, Rational Expectations
    • 

    corecore