1,130 research outputs found

    Decentralized Differentially Private Without-Replacement Stochastic Gradient Descent

    Full text link
    While machine learning has achieved remarkable results in a wide variety of domains, the training of models often requires large datasets that may need to be collected from different individuals. As sensitive information may be contained in the individual's dataset, sharing training data may lead to severe privacy concerns. Therefore, there is a compelling need to develop privacy-aware machine learning methods, for which one effective approach is to leverage the generic framework of differential privacy. Considering that stochastic gradient descent (SGD) is one of the mostly adopted methods for large-scale machine learning problems, two decentralized differentially private SGD algorithms are proposed in this work. Particularly, we focus on SGD without replacement due to its favorable structure for practical implementation. In addition, both privacy and convergence analysis are provided for the proposed algorithms. Finally, extensive experiments are performed to verify the theoretical results and demonstrate the effectiveness of the proposed algorithms

    Differentially Private Linear Models for Gossip Learning through Data Perturbation

    Get PDF
    Privacy is a key concern in many distributed systems that are rich in personal data such as networks of smart meters or smartphones. Decentralizing the processing of personal data in such systems is a promising first step towards achieving privacy through avoiding the collection of data altogether. However, decentralization in itself is not enough: Additional guarantees such as differential privacy are highly desirable. Here, we focus on stochastic gradient descent (SGD), a popular approach to implement distributed learning. Our goal is to design differentially private variants of SGD to be applied in gossip learning, a decentralized learning framework. Known approaches that are suitable for our scenario focus on protecting the gradient that is being computed in each iteration of SGD. This has the drawback that each data point can be accessed only a small number of times. We propose a solution in which we effectively publish the entire database in a differentially private way so that linear learners could be run that are allowed to access any (perturbed) data point any number of times. This flexibility is very useful when using the method in combination with distributed learning environments. We show empirically that the performance of the obtained model is comparable to that of previous gradient-based approaches and it is even superior in certain scenarios

    COINSTAC: A Privacy Enabled Model and Prototype for Leveraging and Processing Decentralized Brain Imaging Data

    Get PDF
    The field of neuroimaging has embraced the need for sharing and collaboration. Data sharing mandates from public funding agencies and major journal publishers have spurred the development of data repositories and neuroinformatics consortia. However, efficient and effective data sharing still faces several hurdles. For example, open data sharing is on the rise but is not suitable for sensitive data that are not easily shared, such as genetics. Current approaches can be cumbersome (such as negotiating multiple data sharing agreements). There are also significant data transfer, organization and computational challenges. Centralized repositories only partially address the issues. We propose a dynamic, decentralized platform for large scale analyses called the Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC). The COINSTAC solution can include data missing from central repositories, allows pooling of both open and ``closed'' repositories by developing privacy-preserving versions of widely-used algorithms, and incorporates the tools within an easy-to-use platform enabling distributed computation. We present an initial prototype system which we demonstrate on two multi-site data sets, without aggregating the data. In addition, by iterating across sites, the COINSTAC model enables meta-analytic solutions to converge to ``pooled-data'' solutions (i.e. as if the entire data were in hand). More advanced approaches such as feature generation, matrix factorization models, and preprocessing can be incorporated into such a model. In sum, COINSTAC enables access to the many currently unavailable data sets, a user friendly privacy enabled interface for decentralized analysis, and a powerful solution that complements existing data sharing solutions

    Analog Multi-Party Computing: Locally Differential Private Protocols for Collaborative Computations

    Full text link
    We consider a fully decentralized scenario in which no central trusted entity exists and all clients are honest-but-curious. The state-of-the-art approaches to this problem often rely on cryptographic protocols, such as multiparty computation (MPC), that require mapping real-valued data to a discrete alphabet, specifically a finite field. These approaches, however, can result in substantial accuracy losses due to computation overflows. To address this issue, we propose A-MPC, a private analog MPC protocol that performs all computations in the analog domain. We characterize the privacy of individual datasets in terms of (ϵ,δ)(\epsilon, \delta)-local differential privacy, where the privacy of a single record in each client's dataset is guaranteed against other participants. In particular, we characterize the required noise variance in the Gaussian mechanism in terms of the required (ϵ,δ)(\epsilon,\delta)-local differential privacy parameters by solving an optimization problem. Furthermore, compared with existing decentralized protocols, A-MPC keeps the privacy of individual datasets against the collusion of all other participants, thereby, in a notably significant improvement, increasing the maximum number of colluding clients tolerated in the protocol by a factor of three compared with the state-of-the-art collaborative learning protocols. Our experiments illustrate that the accuracy of the proposed (ϵ,δ)(\epsilon,\delta)-locally differential private logistic regression and linear regression models trained in a fully-decentralized fashion using A-MPC closely follows that of a centralized one performed by a single trusted entity
    corecore