344 research outputs found

    Survey: Leakage and Privacy at Inference Time

    Get PDF
    Leakage of data from publicly available Machine Learning (ML) models is an area of growing significance as commercial and government applications of ML can draw on multiple sources of data, potentially including users' and clients' sensitive data. We provide a comprehensive survey of contemporary advances on several fronts, covering involuntary data leakage which is natural to ML models, potential malevolent leakage which is caused by privacy attacks, and currently available defence mechanisms. We focus on inference-time leakage, as the most likely scenario for publicly available models. We first discuss what leakage is in the context of different data, tasks, and model architectures. We then propose a taxonomy across involuntary and malevolent leakage, available defences, followed by the currently available assessment metrics and applications. We conclude with outstanding challenges and open questions, outlining some promising directions for future research

    Fine-grained Private Knowledge Distillation

    Full text link
    Knowledge distillation has emerged as a scalable and effective way for privacy-preserving machine learning. One remaining drawback is that it consumes privacy in a model-level (i.e., client-level) manner, every distillation query incurs privacy loss of one client's all records. In order to attain fine-grained privacy accountant and improve utility, this work proposes a model-free reverse kk-NN labeling method towards record-level private knowledge distillation, where each record is employed for labeling at most kk queries. Theoretically, we provide bounds of labeling error rate under the centralized/local/shuffle model of differential privacy (w.r.t. the number of records per query, privacy budgets). Experimentally, we demonstrate that it achieves new state-of-the-art accuracy with one order of magnitude lower of privacy loss. Specifically, on the CIFAR-1010 dataset, it reaches 82.1%82.1\% test accuracy with centralized privacy budget 1.01.0; on the MNIST/SVHN dataset, it reaches 99.1%99.1\%/95.6%95.6\% accuracy respectively with budget 0.10.1. It is the first time deep learning with differential privacy achieve comparable accuracy with reasonable data privacy protection (i.e., exp(ϵ)1.5\exp(\epsilon)\leq 1.5). Our code is available at https://github.com/liyuntong9/rknn

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Heterogeneous Federated Learning: State-of-the-art and Research Challenges

    Full text link
    Federated learning (FL) has drawn increasing attention owing to its potential use in large-scale industrial applications. Existing federated learning works mainly focus on model homogeneous settings. However, practical federated learning typically faces the heterogeneity of data distributions, model architectures, network environments, and hardware devices among participant clients. Heterogeneous Federated Learning (HFL) is much more challenging, and corresponding solutions are diverse and complex. Therefore, a systematic survey on this topic about the research challenges and state-of-the-art is essential. In this survey, we firstly summarize the various research challenges in HFL from five aspects: statistical heterogeneity, model heterogeneity, communication heterogeneity, device heterogeneity, and additional challenges. In addition, recent advances in HFL are reviewed and a new taxonomy of existing HFL methods is proposed with an in-depth analysis of their pros and cons. We classify existing methods from three different levels according to the HFL procedure: data-level, model-level, and server-level. Finally, several critical and promising future research directions in HFL are discussed, which may facilitate further developments in this field. A periodically updated collection on HFL is available at https://github.com/marswhu/HFL_Survey.Comment: 42 pages, 11 figures, and 4 table

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe
    corecore