917 research outputs found

    Differentially-Private Decision Trees with Probabilistic Robustness to Data Poisoning

    Full text link
    Decision trees are interpretable models that are well-suited to non-linear learning problems. Much work has been done on extending decision tree learning algorithms with differential privacy, a system that guarantees the privacy of samples within the training data. However, current state-of-the-art algorithms for this purpose sacrifice much utility for a small privacy benefit. These solutions create random decision nodes that reduce decision tree accuracy or spend an excessive share of the privacy budget on labeling leaves. Moreover, many works do not support or leak information about feature values when data is continuous. We propose a new method called PrivaTree based on private histograms that chooses good splits while consuming a small privacy budget. The resulting trees provide a significantly better privacy-utility trade-off and accept mixed numerical and categorical data without leaking additional information. Finally, while it is notoriously hard to give robustness guarantees against data poisoning attacks, we prove bounds for the expected success rates of backdoor attacks against differentially-private learners. Our experimental results show that PrivaTree consistently outperforms previous works on predictive accuracy and significantly improves robustness against backdoor attacks compared to regular decision trees

    Learning in the Real World: Constraints on Cost, Space, and Privacy

    Get PDF
    The sheer demand for machine learning in fields as varied as: healthcare, web-search ranking, factory automation, collision prediction, spam filtering, and many others, frequently outpaces the intended use-case of machine learning models. In fact, a growing number of companies hire machine learning researchers to rectify this very problem: to tailor and/or design new state-of-the-art models to the setting at hand. However, we can generalize a large set of the machine learning problems encountered in practical settings into three categories: cost, space, and privacy. The first category (cost) considers problems that need to balance the accuracy of a machine learning model with the cost required to evaluate it. These include problems in web-search, where results need to be delivered to a user in under a second and be as accurate as possible. The second category (space) collects problems that require running machine learning algorithms on low-memory computing devices. For instance, in search-and-rescue operations we may opt to use many small unmanned aerial vehicles (UAVs) equipped with machine learning algorithms for object detection to find a desired search target. These algorithms should be small to fit within the physical memory limits of the UAV (and be energy efficient) while reliably detecting objects. The third category (privacy) considers problems where one wishes to run machine learning algorithms on sensitive data. It has been shown that seemingly innocuous analyses on such data can be exploited to reveal data individuals would prefer to keep private. Thus, nearly any algorithm that runs on patient or economic data falls under this set of problems. We devise solutions for each of these problem categories including (i) a fast tree-based model for explicitly trading off accuracy and model evaluation time, (ii) a compression method for the k-nearest neighbor classifier, and (iii) a private causal inference algorithm that protects sensitive data

    Privacy-Preserving Federated Learning over Vertically and Horizontally Partitioned Data for Financial Anomaly Detection

    Full text link
    The effective detection of evidence of financial anomalies requires collaboration among multiple entities who own a diverse set of data, such as a payment network system (PNS) and its partner banks. Trust among these financial institutions is limited by regulation and competition. Federated learning (FL) enables entities to collaboratively train a model when data is either vertically or horizontally partitioned across the entities. However, in real-world financial anomaly detection scenarios, the data is partitioned both vertically and horizontally and hence it is not possible to use existing FL approaches in a plug-and-play manner. Our novel solution, PV4FAD, combines fully homomorphic encryption (HE), secure multi-party computation (SMPC), differential privacy (DP), and randomization techniques to balance privacy and accuracy during training and to prevent inference threats at model deployment time. Our solution provides input privacy through HE and SMPC, and output privacy against inference time attacks through DP. Specifically, we show that, in the honest-but-curious threat model, banks do not learn any sensitive features about PNS transactions, and the PNS does not learn any information about the banks' dataset but only learns prediction labels. We also develop and analyze a DP mechanism to protect output privacy during inference. Our solution generates high-utility models by significantly reducing the per-bank noise level while satisfying distributed DP. To ensure high accuracy, our approach produces an ensemble model, in particular, a random forest. This enables us to take advantage of the well-known properties of ensembles to reduce variance and increase accuracy. Our solution won second prize in the first phase of the U.S. Privacy Enhancing Technologies (PETs) Prize Challenge.Comment: Prize Winner in the U.S. Privacy Enhancing Technologies (PETs) Prize Challeng

    Ensembling Neural Networks for Improved Prediction and Privacy in Early Diagnosis of Sepsis

    Full text link
    Ensembling neural networks is a long-standing technique for improving the generalization error of neural networks by combining networks with orthogonal properties via a committee decision. We show that this technique is an ideal fit for machine learning on medical data: First, ensembles are amenable to parallel and asynchronous learning, thus enabling efficient training of patient-specific component neural networks. Second, building on the idea of minimizing generalization error by selecting uncorrelated patient-specific networks, we show that one can build an ensemble of a few selected patient-specific models that outperforms a single model trained on much larger pooled datasets. Third, the non-iterative ensemble combination step is an optimal low-dimensional entry point to apply output perturbation to guarantee the privacy of the patient-specific networks. We exemplify our framework of differentially private ensembles on the task of early prediction of sepsis, using real-life intensive care unit data labeled by clinical experts.Comment: Accepted at MLHC 202
    • …
    corecore