2,206 research outputs found

    Differentially Private Empirical Risk Minimization with Sparsity-Inducing Norms

    Get PDF
    Differential privacy is concerned about the prediction quality while measuring the privacy impact on individuals whose information is contained in the data. We consider differentially private risk minimization problems with regularizers that induce structured sparsity. These regularizers are known to be convex but they are often non-differentiable. We analyze the standard differentially private algorithms, such as output perturbation, Frank-Wolfe and objective perturbation. Output perturbation is a differentially private algorithm that is known to perform well for minimizing risks that are strongly convex. Previous works have derived excess risk bounds that are independent of the dimensionality. In this paper, we assume a particular class of convex but non-smooth regularizers that induce structured sparsity and loss functions for generalized linear models. We also consider differentially private Frank-Wolfe algorithms to optimize the dual of the risk minimization problem. We derive excess risk bounds for both these algorithms. Both the bounds depend on the Gaussian width of the unit ball of the dual norm. We also show that objective perturbation of the risk minimization problems is equivalent to the output perturbation of a dual optimization problem. This is the first work that analyzes the dual optimization problems of risk minimization problems in the context of differential privacy

    Differentially Private Decomposable Submodular Maximization

    Full text link
    We study the problem of differentially private constrained maximization of decomposable submodular functions. A submodular function is decomposable if it takes the form of a sum of submodular functions. The special case of maximizing a monotone, decomposable submodular function under cardinality constraints is known as the Combinatorial Public Projects (CPP) problem [Papadimitriou et al., 2008]. Previous work by Gupta et al. [2010] gave a differentially private algorithm for the CPP problem. We extend this work by designing differentially private algorithms for both monotone and non-monotone decomposable submodular maximization under general matroid constraints, with competitive utility guarantees. We complement our theoretical bounds with experiments demonstrating empirical performance, which improves over the differentially private algorithms for the general case of submodular maximization and is close to the performance of non-private algorithms

    Characterizing the Sample Complexity of Private Learners

    Full text link
    In 2008, Kasiviswanathan et al. defined private learning as a combination of PAC learning and differential privacy. Informally, a private learner is applied to a collection of labeled individual information and outputs a hypothesis while preserving the privacy of each individual. Kasiviswanathan et al. gave a generic construction of private learners for (finite) concept classes, with sample complexity logarithmic in the size of the concept class. This sample complexity is higher than what is needed for non-private learners, hence leaving open the possibility that the sample complexity of private learning may be sometimes significantly higher than that of non-private learning. We give a combinatorial characterization of the sample size sufficient and necessary to privately learn a class of concepts. This characterization is analogous to the well known characterization of the sample complexity of non-private learning in terms of the VC dimension of the concept class. We introduce the notion of probabilistic representation of a concept class, and our new complexity measure RepDim corresponds to the size of the smallest probabilistic representation of the concept class. We show that any private learning algorithm for a concept class C with sample complexity m implies RepDim(C)=O(m), and that there exists a private learning algorithm with sample complexity m=O(RepDim(C)). We further demonstrate that a similar characterization holds for the database size needed for privately computing a large class of optimization problems and also for the well studied problem of private data release

    Optimal Lower Bounds for Universal and Differentially Private Steiner Tree and TSP

    Get PDF
    Given a metric space on n points, an {\alpha}-approximate universal algorithm for the Steiner tree problem outputs a distribution over rooted spanning trees such that for any subset X of vertices containing the root, the expected cost of the induced subtree is within an {\alpha} factor of the optimal Steiner tree cost for X. An {\alpha}-approximate differentially private algorithm for the Steiner tree problem takes as input a subset X of vertices, and outputs a tree distribution that induces a solution within an {\alpha} factor of the optimal as before, and satisfies the additional property that for any set X' that differs in a single vertex from X, the tree distributions for X and X' are "close" to each other. Universal and differentially private algorithms for TSP are defined similarly. An {\alpha}-approximate universal algorithm for the Steiner tree problem or TSP is also an {\alpha}-approximate differentially private algorithm. It is known that both problems admit O(logn)-approximate universal algorithms, and hence O(log n)-approximate differentially private algorithms as well. We prove an {\Omega}(logn) lower bound on the approximation ratio achievable for the universal Steiner tree problem and the universal TSP, matching the known upper bounds. Our lower bound for the Steiner tree problem holds even when the algorithm is allowed to output a more general solution of a distribution on paths to the root.Comment: 14 page

    Differentially Private Convex Optimization with Piecewise Affine Objectives

    Full text link
    Differential privacy is a recently proposed notion of privacy that provides strong privacy guarantees without any assumptions on the adversary. The paper studies the problem of computing a differentially private solution to convex optimization problems whose objective function is piecewise affine. Such problem is motivated by applications in which the affine functions that define the objective function contain sensitive user information. We propose several privacy preserving mechanisms and provide analysis on the trade-offs between optimality and the level of privacy for these mechanisms. Numerical experiments are also presented to evaluate their performance in practice

    Learning Coverage Functions and Private Release of Marginals

    Full text link
    We study the problem of approximating and learning coverage functions. A function c:2[n]R+c: 2^{[n]} \rightarrow \mathbf{R}^{+} is a coverage function, if there exists a universe UU with non-negative weights w(u)w(u) for each uUu \in U and subsets A1,A2,,AnA_1, A_2, \ldots, A_n of UU such that c(S)=uiSAiw(u)c(S) = \sum_{u \in \cup_{i \in S} A_i} w(u). Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunctions. They are a natural subclass of submodular functions and arise in a number of applications. We give an algorithm that for any γ,δ>0\gamma,\delta>0, given random and uniform examples of an unknown coverage function cc, finds a function hh that approximates cc within factor 1+γ1+\gamma on all but δ\delta-fraction of the points in time poly(n,1/γ,1/δ)poly(n,1/\gamma,1/\delta). This is the first fully-polynomial algorithm for learning an interesting class of functions in the demanding PMAC model of Balcan and Harvey (2011). Our algorithms are based on several new structural properties of coverage functions. Using the results in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically with excess 1\ell_1-error ϵ\epsilon over all product and symmetric distributions in time nlog(1/ϵ)n^{\log(1/\epsilon)}. In contrast, we show that, without assumptions on the distribution, learning coverage functions is at least as hard as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known algorithm runs in time 2O~(n1/3)2^{\tilde{O}(n^{1/3})} (Klivans and Servedio, 2004). As an application of our learning results, we give simple differentially-private algorithms for releasing monotone conjunction counting queries with low average error. In particular, for any knk \leq n, we obtain private release of kk-way marginals with average error αˉ\bar{\alpha} in time nO(log(1/αˉ))n^{O(\log(1/\bar{\alpha}))}
    corecore