10,630 research outputs found

    High-Precision Localization Using Ground Texture

    Full text link
    Location-aware applications play an increasingly critical role in everyday life. However, satellite-based localization (e.g., GPS) has limited accuracy and can be unusable in dense urban areas and indoors. We introduce an image-based global localization system that is accurate to a few millimeters and performs reliable localization both indoors and outside. The key idea is to capture and index distinctive local keypoints in ground textures. This is based on the observation that ground textures including wood, carpet, tile, concrete, and asphalt may look random and homogeneous, but all contain cracks, scratches, or unique arrangements of fibers. These imperfections are persistent, and can serve as local features. Our system incorporates a downward-facing camera to capture the fine texture of the ground, together with an image processing pipeline that locates the captured texture patch in a compact database constructed offline. We demonstrate the capability of our system to robustly, accurately, and quickly locate test images on various types of outdoor and indoor ground surfaces

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival

    Advanced data analysis for traction force microscopy and data-driven discovery of physical equations

    Get PDF
    The plummeting cost of collecting and storing data and the increasingly available computational power in the last decade have led to the emergence of new data analysis approaches in various scientific fields. Frequently, the new statistical methodology is employed for analyzing data involving incomplete or unknown information. In this thesis, new statistical approaches are developed for improving the accuracy of traction force microscopy (TFM) and data-driven discovery of physical equations. TFM is a versatile method for the reconstruction of a spatial image of the traction forces exerted by cells on elastic gel substrates. The traction force field is calculated from a linear mechanical model connecting the measured substrate displacements with the sought-for cell-generated stresses in real or Fourier space, which is an inverse and ill-posed problem. This inverse problem is commonly solved making use of regularization methods. Here, we systematically test the performance of new regularization methods and Bayesian inference for quantifying the parameter uncertainty in TFM. We compare two classical schemes, L1- and L2-regularization with three previously untested schemes, namely Elastic Net regularization, Proximal Gradient Lasso, and Proximal Gradient Elastic Net. We find that Elastic Net regularization, which combines L1 and L2 regularization, outperforms all other methods with regard to accuracy of traction reconstruction. Next, we develop two methods, Bayesian L2 regularization and Advanced Bayesian L2 regularization, for automatic, optimal L2 regularization. We further combine the Bayesian L2 regularization with the computational speed of Fast Fourier Transform algorithms to develop a fully automated method for noise reduction and robust, standardized traction-force reconstruction that we call Bayesian Fourier transform traction cytometry (BFTTC). This method is made freely available as a software package with graphical user-interface for intuitive usage. Using synthetic data and experimental data, we show that these Bayesian methods enable robust reconstruction of traction without requiring a difficult selection of regularization parameters specifically for each data set. Next, we employ our methodology developed for the solution of inverse problems for automated, data-driven discovery of ordinary differential equations (ODEs), partial differential equations (PDEs), and stochastic differential equations (SDEs). To find the equations governing a measured time-dependent process, we construct dictionaries of non-linear candidate equations. These candidate equations are evaluated using the measured data. With this approach, one can construct a likelihood function for the candidate equations. Optimization yields a linear, inverse problem which is to be solved under a sparsity constraint. We combine Bayesian compressive sensing using Laplace priors with automated thresholding to develop a new approach, namely automatic threshold sparse Bayesian learning (ATSBL). ATSBL is a robust method to identify ODEs, PDEs, and SDEs involving Gaussian noise, which is also referred to as type I noise. We extensively test the method with synthetic datasets describing physical processes. For SDEs, we combine data-driven inference using ATSBL with a novel entropy-based heuristic for discarding data points with high uncertainty. Finally, we develop an automatic iterative sampling optimization technique akin to Umbrella sampling. Therewith, we demonstrate that data-driven inference of SDEs can be substantially improved through feedback during the inference process if the stochastic process under investigation can be manipulated either experimentally or in simulations

    Automatic Vehicle Trajectory Extraction by Aerial Remote Sensing

    Get PDF
    Research in road users’ behaviour typically depends on detailed observational data availability, particularly if the interest is in driving behaviour modelling. Among this type of data, vehicle trajectories are an important source of information for traffic flow theory, driving behaviour modelling, innovation in traffic management and safety and environmental studies. Recent developments in sensing technologies and image processing algorithms reduced the resources (time and costs) required for detailed traffic data collection, promoting the feasibility of site-based and vehicle-based naturalistic driving observation. For testing the core models of a traffic microsimulation application for safety assessment, vehicle trajectories were collected by remote sensing on a typical Portuguese suburban motorway. Multiple short flights over a stretch of an urban motorway allowed for the collection of several partial vehicle trajectories. In this paper the technical details of each step of the methodology used is presented: image collection, image processing, vehicle identification and vehicle tracking. To collect the images, a high-resolution camera was mounted on an aircraft's gyroscopic platform. The camera was connected to a DGPS for extraction of the camera position and allowed the collection of high resolution images at a low frame rate of 2s. After generic image orthorrectification using the flight details and the terrain model, computer vision techniques were used for fine rectification: the scale-invariant feature transform algorithm was used for detection and description of image features, and the random sample consensus algorithm for feature matching. Vehicle detection was carried out by median-based background subtraction. After the computation of the detected foreground and the shadow detection using a spectral ratio technique, region segmentation was used to identify candidates for vehicle positions. Finally, vehicles were tracked using a k- shortest disjoints paths algorithm. This approach allows for the optimization of an entire set of trajectories against all possible position candidates using motion-based optimization. Besides the importance of a new trajectory dataset that allows the development of new behavioural models and the validation of existing ones, this paper also describes the application of state-of-the-art algorithms and methods that significantly minimize the resources needed for such data collection. Keywords: Vehicle trajectories extraction, Driver behaviour, Remote sensin
    corecore