82,212 research outputs found

    Network Synchronization in a Noisy Environment with Time Delays: Fundamental Limits and Trade-Offs

    Full text link
    We study the effects of nonzero time delays in stochastic synchronization problems with linear couplings in an arbitrary network. Using the known exact threshold value from the theory of differential equations with delays, we provide the synchronizability threshold for an arbitrary network. Further, by constructing the scaling theory of the underlying fluctuations, we establish the absolute limit of synchronization efficiency in a noisy environment with uniform time delays, i.e., the minimum attainable value of the width of the synchronization landscape. Our results have also strong implications for optimization and trade-offs in network synchronization with delays.Comment: 3 figure

    Differential Distributed Space-Time Coding with Imperfect Synchronization

    Full text link
    Differential distributed space-time coding (D-DSTC) has been considered to improve both diversity and data-rate in cooperative communications in the absence of channel information. However, conventionally, it is assumed that relays are perfectly synchronized in the symbol level. In practice, this assumption is easily violated due to the distributed nature of the relay networks. This paper proposes a new differential encoding and decoding process for D-DSTC systems with two relays. The proposed method is robust against synchronization errors and does not require any channel information at the destination. Moreover, the maximum possible diversity and symbol-by-symbol decoding are attained. Simulation results are provided to show the performance of the proposed method for various synchronization errors and the fact that our algorithm is not sensitive to synchronization error.Comment: to appear in IEEE Globecom, 201

    Achieving synchronization in arrays of coupled differential systems with time-varying couplings

    Get PDF
    In this paper, we study complete synchronization of the complex dynamical networks described by linearly coupled ordinary differential equation systems (LCODEs). The coupling considered here is time-varying in both the network structure and the reaction dynamics. Inspired by our previous paper [6], the extended Hajnal diameter is introduced and used to measure the synchronization in a general differential system. Then we find that the Hajnal diameter of the linear system induced by the time-varying coupling matrix and the largest Lyapunov exponent of the synchronized system play the key roles in synchronization analysis of LCODEs with the identity inner coupling matrix. As an application, we obtain a general sufficient condition guaranteeing directed time-varying graph to reach consensus. Example with numerical simulation is provided to show the effectiveness the theoretical results.Comment: 22 pages, 4 figure

    Langevin approach to synchronization of hyperchaotic time-delay dynamics

    Full text link
    In this paper, we characterize the synchronization phenomenon of hyperchaotic scalar non-linear delay dynamics in a fully-developed chaos regime. Our results rely on the observation that, in that regime, the stationary statistical properties of a class of hyperchaotic attractors can be reproduced with a linear Langevin equation, defined by replacing the non-linear delay force by a delta-correlated noise. Therefore, the synchronization phenomenon can be analytically characterized by a set of coupled Langevin equations. We apply this formalism to study anticipated synchronization dynamics subject to external noise fluctuations as well as for characterizing the effects of parameter mismatch in a hyperchaotic communication scheme. The same procedure is applied to second order differential delay equations associated to synchronization in electro-optical devices. In all cases, the departure with respect to perfect synchronization is measured through a similarity function. Numerical simulations in discrete maps associated to the hyperchaotic dynamics support the formalism.Comment: 12 pages, 6 figure
    • …
    corecore