14,124 research outputs found

    Quasi-orthogonal space-frequency coding in non-coherent cooperative broadband networks

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.So far, complex valued orthogonal codes have been used differentially in cooperative broadband networks. These codes however achieve less than unitary code rate when utilized in cooperative networks with more than two relays. Therefore, the main challenge is how to construct unitary rate codes for non-coherent cooperative broadband networks with more than two relays while exploiting the achievable spatial and frequency diversity. In this paper, we extend full rate quasi-orthogonal codes to differential cooperative broadband networks where channel information is unavailable. From this, we propose a generalized differential distributed quasi-orthogonal space-frequency coding (DQSFC) protocol for cooperative broadband networks. Our proposed scheme is able to achieve full rate, and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of our scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, we derive sufficient conditions for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity.Peer reviewe

    Design of fully diverse multiple-antenna codes based on Sp(2)

    Get PDF
    Fully diverse constellations, i.e., sets of unitary matrices whose pairwise differences are nonsingular, are useful in multiple-antenna communications, especially in multiple-antenna differential modulation, since they have good pairwise error properties. Recently, group theoretic ideas, especially fixed-point-free (fpf) groups, have been used to design fully diverse constellations of unitary matrices. Here we construct four-transmit-antenna constellations appropriate for differential modulation based on the symplectic group Sp(2). They can be regarded as extensions of Alamouti's celebrated two-transmit-antenna orthogonal design which can be constructed from the group Sp(1). We further show that the structure of Sp(2) codes lends itself to efficient maximum-likelihood (ML) decoding via the sphere decoding algorithm. Finally, the performance of Sp(2) codes is compared with that of other existing codes including Alamouti's orthogonal design, a 4/spl times/4 complex orthogonal design, Cayley differential unitary space-time codes and group-based codes

    Maximum Rate of Unitary-Weight, Single-Symbol Decodable STBCs

    Full text link
    It is well known that the Space-time Block Codes (STBCs) from Complex orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD). The weight matrices of the square CODs are all unitary and obtainable from the unitary matrix representations of Clifford Algebras when the number of transmit antennas nn is a power of 2. The rate of the square CODs for n=2an = 2^a has been shown to be a+12a\frac{a+1}{2^a} complex symbols per channel use. However, SSD codes having unitary-weight matrices need not be CODs, an example being the Minimum-Decoding-Complexity STBCs from Quasi-Orthogonal Designs. In this paper, an achievable upper bound on the rate of any unitary-weight SSD code is derived to be a2a1\frac{a}{2^{a-1}} complex symbols per channel use for 2a2^a antennas, and this upper bound is larger than that of the CODs. By way of code construction, the interrelationship between the weight matrices of unitary-weight SSD codes is studied. Also, the coding gain of all unitary-weight SSD codes is proved to be the same for QAM constellations and conditions that are necessary for unitary-weight SSD codes to achieve full transmit diversity and optimum coding gain are presented.Comment: accepted for publication in the IEEE Transactions on Information Theory, 9 pages, 1 figure, 1 Tabl

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    Performance comparison of differential space-time signalling schemes for OFDM systems

    Get PDF
    Differential transmit diversity is an attractive alternative to its coherent counterpart, especially for multiple antenna systems where channel estimation is more difficult to attain compared to that of single antenna systems. In this paper we compare two different types of differential transmit diversity techniques for OFDM based transmissions. The first technique uses differential space-time block codes (DSTBC) from orthogonal designs and the second uses the differential cyclic delay diversity (DCDD). The results compare the bit error performance for several transmit antenna configurations. The results show that DCDD offers a very close performance to that of DSTBC, with the advantage of a simplified receiver structure
    corecore