972 research outputs found

    Differential quadrature method for space-fractional diffusion equations on 2D irregular domains

    Full text link
    In mathematical physics, the space-fractional diffusion equations are of particular interest in the studies of physical phenomena modelled by L\'{e}vy processes, which are sometimes called super-diffusion equations. In this article, we develop the differential quadrature (DQ) methods for solving the 2D space-fractional diffusion equations on irregular domains. The methods in presence reduce the original equation into a set of ordinary differential equations (ODEs) by introducing valid DQ formulations to fractional directional derivatives based on the functional values at scattered nodal points on problem domain. The required weighted coefficients are calculated by using radial basis functions (RBFs) as trial functions, and the resultant ODEs are discretized by the Crank-Nicolson scheme. The main advantages of our methods lie in their flexibility and applicability to arbitrary domains. A series of illustrated examples are finally provided to support these points.Comment: 25 pages, 25 figures, 7 table

    A space-time pseudospectral discretization method for solving diffusion optimal control problems with two-sided fractional derivatives

    Full text link
    We propose a direct numerical method for the solution of an optimal control problem governed by a two-side space-fractional diffusion equation. The presented method contains two main steps. In the first step, the space variable is discretized by using the Jacobi-Gauss pseudospectral discretization and, in this way, the original problem is transformed into a classical integer-order optimal control problem. The main challenge, which we faced in this step, is to derive the left and right fractional differentiation matrices. In this respect, novel techniques for derivation of these matrices are presented. In the second step, the Legendre-Gauss-Radau pseudospectral method is employed. With these two steps, the original problem is converted into a convex quadratic optimization problem, which can be solved efficiently by available methods. Our approach can be easily implemented and extended to cover fractional optimal control problems with state constraints. Five test examples are provided to demonstrate the efficiency and validity of the presented method. The results show that our method reaches the solutions with good accuracy and a low CPU time.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Vibration and Control', available from [http://journals.sagepub.com/home/jvc]. Submitted 02-June-2018; Revised 03-Sept-2018; Accepted 12-Oct-201

    An unstructured mesh control volume method for two-dimensional space fractional diffusion equations with variable coefficients on convex domains

    Full text link
    In this paper, we propose a novel unstructured mesh control volume method to deal with the space fractional derivative on arbitrarily shaped convex domains, which to the best of our knowledge is a new contribution to the literature. Firstly, we present the finite volume scheme for the two-dimensional space fractional diffusion equation with variable coefficients and provide the full implementation details for the case where the background interpolation mesh is based on triangular elements. Secondly, we explore the property of the stiffness matrix generated by the integral of space fractional derivative. We find that the stiffness matrix is sparse and not regular. Therefore, we choose a suitable sparse storage format for the stiffness matrix and develop a fast iterative method to solve the linear system, which is more efficient than using the Gaussian elimination method. Finally, we present several examples to verify our method, in which we make a comparison of our method with the finite element method for solving a Riesz space fractional diffusion equation on a circular domain. The numerical results demonstrate that our method can reduce CPU time significantly while retaining the same accuracy and approximation property as the finite element method. The numerical results also illustrate that our method is effective and reliable and can be applied to problems on arbitrarily shaped convex domains.Comment: 18 pages, 5 figures, 9 table

    Fourier spectral methods for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is computationally demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reactiondiffusion equations. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is show-cased by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models,together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator

    A unified meshfree pseudospectral method for solving both classical and fractional PDEs

    Full text link
    In this paper, we propose a meshfree method based on the Gaussian radial basis function (RBF) to solve both classical and fractional PDEs. The proposed method takes advantage of the analytical Laplacian of Gaussian functions so as to accommodate the discretization of the classical and fractional Laplacian in a single framework and avoid the large computational cost for numerical evaluation of the fractional derivatives. These important merits distinguish it from other numerical methods for fractional PDEs. Moreover, our method is simple and easy to handle complex geometry and local refinement, and its computer program implementation remains the same for any dimension d≥1d \ge 1. Extensive numerical experiments are provided to study the performance of our method in both approximating the Dirichlet Laplace operators and solving PDE problems. Compared to the recently proposed Wendland RBF method, our method exactly incorporates the Dirichlet boundary conditions into the scheme and is free of the Gibbs phenomenon as observed in the literature. Our studies suggest that to obtain good accuracy the shape parameter cannot be too small or too big, and the optimal shape parameter might depend on the RBF center points and the solution properties.Comment: 24 pages; 15 figure
    • …
    corecore