42,153 research outputs found

    Pushforwards via scattering equations with applications to positive geometries

    Get PDF
    © 2022 The Authors. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), https://creativecommons.org/licenses/by/4.0/In this paper we explore and expand the connection between two modern descriptions of scattering amplitudes, the CHY formalism and the framework of positive geometries, facilitated by the scattering equations. For theories in the CHY family whose S-matrix is captured by some positive geometry in the kinematic space, the corresponding canonical form can be obtained as the pushforward via the scattering equations of the canonical form of a positive geometry defined in the CHY moduli space. In order to compute these canonical forms in kinematic spaces, we study the general problem of pushing forward arbitrary rational differential forms via the scattering equations. We develop three methods which achieve this without ever needing to explicitly solve any scattering equations. Our results use techniques from computational algebraic geometry, including companion matrices and the global duality of residues, and they extend the application of similar results for rational functions to rational differential forms.Peer reviewe

    Computational algebraic methods in efficient estimation

    Full text link
    A strong link between information geometry and algebraic statistics is made by investigating statistical manifolds which are algebraic varieties. In particular it it shown how first and second order efficient estimators can be constructed, such as bias corrected Maximum Likelihood and more general estimators, and for which the estimating equations are purely algebraic. In addition it is shown how Gr\"obner basis technology, which is at the heart of algebraic statistics, can be used to reduce the degrees of the terms in the estimating equations. This points the way to the feasible use, to find the estimators, of special methods for solving polynomial equations, such as homotopy continuation methods. Simple examples are given showing both equations and computations. *** The proof of Theorem 2 was corrected by the latest version. Some minor errors were also corrected.Comment: 21 pages, 5 figure

    Algebraic Topology

    Full text link
    The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology.Comment: This manuscript will be published as Chapter 5 in Wiley's textbook \emph{Mathematical Tools for Physicists}, 2nd edition, edited by Michael Grinfeld from the University of Strathclyd

    A geometry of information, I: Nerves, posets and differential forms

    Get PDF
    The main theme of this workshop (Dagstuhl seminar 04351) is `Spatial Representation: Continuous vs. Discrete'. Spatial representation has two contrasting but interacting aspects (i) representation of spaces' and (ii) representation by spaces. In this paper, we will examine two aspects that are common to both interpretations of the theme, namely nerve constructions and refinement. Representations change, data changes, spaces change. We will examine the possibility of a `differential geometry' of spatial representations of both types, and in the sequel give an algebra of differential forms that has the potential to handle the dynamical aspect of such a geometry. We will discuss briefly a conjectured class of spaces, generalising the Cantor set which would seem ideal as a test-bed for the set of tools we are developing.Comment: 28 pages. A version of this paper appears also on the Dagstuhl seminar portal http://drops.dagstuhl.de/portals/04351

    On post-Lie algebras, Lie--Butcher series and moving frames

    Full text link
    Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on differential manifolds. They have been studied extensively in recent years, both from algebraic operadic points of view and through numerous applications in numerical analysis, control theory, stochastic differential equations and renormalization. Butcher series are formal power series founded on pre-Lie algebras, used in numerical analysis to study geometric properties of flows on euclidean spaces. Motivated by the analysis of flows on manifolds and homogeneous spaces, we investigate algebras arising from flat connections with constant torsion, leading to the definition of post-Lie algebras, a generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately associated with euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan's method of moving frames. Lie--Butcher series combine Butcher series with Lie series and are used to analyze flows on manifolds. In this paper we show that Lie--Butcher series are founded on post-Lie algebras. The functorial relations between post-Lie algebras and their enveloping algebras, called D-algebras, are explored. Furthermore, we develop new formulas for computations in free post-Lie algebras and D-algebras, based on recursions in a magma, and we show that Lie--Butcher series are related to invariants of curves described by moving frames.Comment: added discussion of post-Lie algebroid

    Differential Chow Form for Projective Differential Variety

    Full text link
    In this paper, a generic intersection theorem in projective differential algebraic geometry is presented. Precisely, the intersection of an irreducible projective differential variety of dimension d>0 and order h with a generic projective differential hyperplane is shown to be an irreducible projective differential variety of dimension d-1 and order h. Based on the generic intersection theorem, the Chow form for an irreducible projective differential variety is defined and most of the properties of the differential Chow form in affine differential case are established for its projective differential counterpart. Finally, we apply the differential Chow form to a result of linear dependence over projective varieties given by Kolchin.Comment: 17 page
    corecore