93 research outputs found

    Accurate Tracking of Aggressive Quadrotor Trajectories using Incremental Nonlinear Dynamic Inversion and Differential Flatness

    Full text link
    Autonomous unmanned aerial vehicles (UAVs) that can execute aggressive (i.e., high-speed and high-acceleration) maneuvers have attracted significant attention in the past few years. This paper focuses on accurate tracking of aggressive quadcopter trajectories. We propose a novel control law for tracking of position and yaw angle and their derivatives of up to fourth order, specifically, velocity, acceleration, jerk, and snap along with yaw rate and yaw acceleration. Jerk and snap are tracked using feedforward inputs for angular rate and angular acceleration based on the differential flatness of the quadcopter dynamics. Snap tracking requires direct control of body torque, which we achieve using closed-loop motor speed control based on measurements from optical encoders attached to the motors. The controller utilizes incremental nonlinear dynamic inversion (INDI) for robust tracking of linear and angular accelerations despite external disturbances, such as aerodynamic drag forces. Hence, prior modeling of aerodynamic effects is not required. We rigorously analyze the proposed control law through response analysis, and we demonstrate it in experiments. The controller enables a quadcopter UAV to track complex 3D trajectories, reaching speeds up to 12.9 m/s and accelerations up to 2.1g, while keeping the root-mean-square tracking error down to 6.6 cm, in a flight volume that is roughly 18 m by 7 m and 3 m tall. We also demonstrate the robustness of the controller by attaching a drag plate to the UAV in flight tests and by pulling on the UAV with a rope during hover.Comment: To be published in IEEE Transactions on Control Systems Technology. Revision: new set of experiments at increased speed (up to 12.9 m/s), updated controller design using quaternion representation, new video available at https://youtu.be/K15lNBAKDC

    Grasping, Perching, And Visual Servoing For Micro Aerial Vehicles

    Get PDF
    Micro Aerial Vehicles (MAVs) have seen a dramatic growth in the consumer market because of their ability to provide new vantage points for aerial photography and videography. However, there is little consideration for physical interaction with the environment surrounding them. Onboard manipulators are absent, and onboard perception, if existent, is used to avoid obstacles and maintain a minimum distance from them. There are many applications, however, which would benefit greatly from aerial manipulation or flight in close proximity to structures. This work is focused on facilitating these types of close interactions between quadrotors and surrounding objects. We first explore high-speed grasping, enabling a quadrotor to quickly grasp an object while moving at a high relative velocity. Next, we discuss planning and control strategies, empowering a quadrotor to perch on vertical surfaces using a downward-facing gripper. Then, we demonstrate that such interactions can be achieved using only onboard sensors by incorporating vision-based control and vision-based planning. In particular, we show how a quadrotor can use a single camera and an Inertial Measurement Unit (IMU) to perch on a cylinder. Finally, we generalize our approach to consider objects in motion, and we present relative pose estimation and planning, enabling tracking of a moving sphere using only an onboard camera and IMU

    Multi-Layered Optimal Navigation System For Quadrotors UAV

    Get PDF
    Purpose This paper aims to propose a new multi-layered optimal navigation system that jointly optimizes the energy consumption, improves the robustness and raises the performance of a quadrotor unmanned aerial vehicle (UAV). Design/methodology/approach The proposed system is designed as a multi-layered system. First, the control architecture layer links the input and the output spaces via quaternion-based differential flatness equations. Then, the trajectory generation layer determines the optimal reference path and avoids obstacles to secure the UAV from collisions. Finally, the control layer allows the quadrotor to track the generated path and guarantees the stability using a double loop non-linear optimal backstepping controller (OBS). Findings All the obtained results are confirmed using several scenarios in different situations to prove the accuracy, energy optimization and the robustness of the designed system. Practical implications The proposed controllers are easily implementable on-board and are computationally efficient. Originality/value The originality of this research is the design of a multi-layered optimal navigation system for quadrotor UAV. The proposed control architecture presents a direct relation between the states and their derivatives, which then simplifies the trajectory generation problem. Furthermore, the derived differentially flat equations allow optimization to occur within the output space as opposed to the control space. This is beneficial because constraints such as obstacle avoidance occur in the output space; hence, the computation time for constraint handling is reduced. For the OBS, the novelty is that all controller parameters are derived using the multi-objective genetic algorithm (MO-GA) that optimizes all the quadrotor state’s cost functions jointly

    Advanced UAVs Nonlinear Control Systems and Applications

    Get PDF
    Recent development of different control systems for UAVs has caught the attention of academic and industry, due to the wide range of their applications such as in surveillance, delivery, work assistant, and photography. In addition, arms, grippers, or tethers could be installed to UAVs so that they can assist in constructing, transporting, and carrying payloads. In this book chapter, the control laws of the attitude and position of a quadcopter UAV have been derived basically utilizing three methods including backstepping, sliding mode control, and feedback linearization incorporated with LQI optimal controller. The main contribution of this book chapter would be concluded in the strategy of deriving the control laws of the translational positions of a quadcopter UAV. The control laws for trajectory tracking using the proposed strategies have been validated by simulation using MATLAB®/Simulink and experimental results obtained from a quadcopter test bench. Simulation results show a comparison between the performances of each of the proposed techniques depending on the nonlinear model of the quadcopter system under investigation; the trajectory tracking has been achieved properly for different types of trajectories, i.e., spiral trajectory, in the presence of unknown disturbances. Moreover, the practical results coincided with the results of the simulation results

    Opportunities and Challenges with Autonomous Micro Aerial Vehicles, The Int.

    Get PDF
    Abstract We survey the recent work on micro-UAVs, a fast-growing field in robotics, outlining the opportunities for research and applications, along with the scientific and technological challenges. Micro-UAVs can operate in three-dimensional environments, explore and map multi-story buildings, manipulate and transport objects, and even perform such tasks as assembly. While fixed-base industrial robots were the main focus in the first two decades of robotics, and mobile robots enabled most of the significant advances during the next two decades, it is likely that UAVs, and particularly micro-UAVs will provide a major impetus for the third phase of development

    Path Following by a Quadrotor Using Virtual Target Pursuit Guidance

    Get PDF
    Quadrotors, being more agile than fixed-wing vehicles, are the ideal candidates for autonomous missions in small, compact spaces. The immense challenge to navigate such environments is fulfilled by the concept of path following. Path following is the method of tracking/tracing a fixed, pre-defined path with minimum position error while exerting the lowest possible control effort. In this work, the missile guidance technique of pure pursuit is adopted and modified for a 3D quadrotor model to follow fixed, compact trajectories. A specialized hardware testing platform is developed to test this algorithm. The results obtained from simulation and flight tests are compared to results from another technique called differential flatness. A small part of this thesis also deals with the stability analysis of the modified 3D pure pursuit algorithm to track trajectories expending lower control effort

    Time-Optimal Gate-Traversing Planner for Autonomous Drone Racing

    Full text link
    In drone racing, the time-minimum trajectory is affected by the drone's capabilities, the layout of the race track, and the configurations of the gates (e.g., their shapes and sizes). However, previous studies neglect the configuration of the gates, simply rendering drone racing a waypoint-passing task. This formulation often leads to a conservative choice of paths through the gates, as the spatial potential of the gates is not fully utilized. To address this issue, we present a time-optimal planner that can faithfully model gate constraints with various configurations and thereby generate a more time-efficient trajectory while considering the single-rotor-thrust limits. Our approach excels in computational efficiency which only takes a few seconds to compute the full state and control trajectories of the drone through tracks with dozens of different gates. Extensive simulations and experiments confirm the effectiveness of the proposed methodology, showing that the lap time can be further reduced by taking into account the gate's configuration. We validate our planner in real-world flights and demonstrate super-extreme flight trajectory through race tracks
    • …
    corecore