4,967 research outputs found

    Nitric oxide donation lowers blood pressure in adrenocorticotrophic hormone-induced hypertensive rats.

    No full text
    Adrenocorticotrophic hormone (ACTH) elevates systolic blood pressure (SBP) and lowers plasma reactive nitrogen intermediates in rats. We assessed the ability of NO donation from isosorbide dinitrate (ISDN) to prevent or reverse the hypertension caused by ACTH. In the prevention study, male Sprague Dawley rats were treated with ACTH (0.2 mg/kg/day) or saline control for 8 days, with either concurrent ISDN (100 mg/kg/day) via the drinking water or water alone. Animals receiving ISDN via the drinking water were provided with nitrate-free water for 8 hours every day. In the reversal study ISDN (100 mg/kg) or vehicle was given as a single oral dose on day 8. SBP was measured daily by the indirect tail-cuff method in conscious, restrained rats. ACTH caused a significant increase in SBP compared with saline (P < 0.0015). In the prevention study, chronic administration of ISDN (100 mg/kg/day) did not affect the SBP in either group. In the reversal study, ISDN significantly lowered SBP in ACTH-treated rats at 1 and 2.5 hours (132 +/- 3 mmHg (1 h) and 131 +/- 2 mmHg (2.5 h) versus 143 +/- 3 mmHg (0 h), P < 0.002), but not to control levels. It had no effect in control (saline treated) rats. In conclusion, the lowering of SBP by NO donation is consistent with the notion that ACTH-induced hypertension involves an impaired bioavailability or action of NO in vivo

    Genetic learning particle swarm optimization

    Get PDF
    Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for “learning.” This leads to a generalized “learning PSO” paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO

    A Comparison of Nature Inspired Algorithms for Multi-threshold Image Segmentation

    Full text link
    In the field of image analysis, segmentation is one of the most important preprocessing steps. One way to achieve segmentation is by mean of threshold selection, where each pixel that belongs to a determined class islabeled according to the selected threshold, giving as a result pixel groups that share visual characteristics in the image. Several methods have been proposed in order to solve threshold selectionproblems; in this work, it is used the method based on the mixture of Gaussian functions to approximate the 1D histogram of a gray level image and whose parameters are calculated using three nature inspired algorithms (Particle Swarm Optimization, Artificial Bee Colony Optimization and Differential Evolution). Each Gaussian function approximates thehistogram, representing a pixel class and therefore a threshold point. Experimental results are shown, comparing in quantitative and qualitative fashion as well as the main advantages and drawbacks of each algorithm, applied to multi-threshold problem.Comment: 16 pages, this is a draft of the final version of the article sent to the Journa

    Differential evolution with an individual-dependent mechanism

    Get PDF
    Differential evolution (DE) is a well-known optimization algorithm that utilizes the difference of positions between individuals to perturb base vectors and thus generate new mutant individuals. However, the difference between the fitness values of individuals, which may be helpful to improve the performance of the algorithm, has not been used to tune parameters and choose mutation strategies. In this paper, we propose a novel variant of DE with an individual-dependent mechanism that includes an individual-dependent parameter (IDP) setting and an individual-dependent mutation (IDM) strategy. In the IDP setting, control parameters are set for individuals according to the differences in their fitness values. In the IDM strategy, four mutation operators with different searching characteristics are assigned to the superior and inferior individuals, respectively, at different stages of the evolution process. The performance of the proposed algorithm is then extensively evaluated on a suite of the 28 latest benchmark functions developed for the 2013 Congress on Evolutionary Computation special session. Experimental results demonstrate the algorithm's outstanding performance

    On-line Search History-assisted Restart Strategy for Covariance Matrix Adaptation Evolution Strategy

    Full text link
    Restart strategy helps the covariance matrix adaptation evolution strategy (CMA-ES) to increase the probability of finding the global optimum in optimization, while a single run CMA-ES is easy to be trapped in local optima. In this paper, the continuous non-revisiting genetic algorithm (cNrGA) is used to help CMA-ES to achieve multiple restarts from different sub-regions of the search space. The CMA-ES with on-line search history-assisted restart strategy (HR-CMA-ES) is proposed. The entire on-line search history of cNrGA is stored in a binary space partitioning (BSP) tree, which is effective for performing local search. The frequently sampled sub-region is reflected by a deep position in the BSP tree. When leaf nodes are located deeper than a threshold, the corresponding sub-region is considered a region of interest (ROI). In HR-CMA-ES, cNrGA is responsible for global exploration and suggesting ROI for CMA-ES to perform an exploitation within or around the ROI. CMA-ES restarts independently in each suggested ROI. The non-revisiting mechanism of cNrGA avoids to suggest the same ROI for a second time. Experimental results on the CEC 2013 and 2017 benchmark suites show that HR-CMA-ES performs better than both CMA-ES and cNrGA. A positive synergy is observed by the memetic cooperation of the two algorithms.Comment: 8 pages, 9 figure
    • …
    corecore