1,162 research outputs found

    Particle-filtering approaches for nonlinear Bayesian decoding of neuronal spike trains

    Full text link
    The number of neurons that can be simultaneously recorded doubles every seven years. This ever increasing number of recorded neurons opens up the possibility to address new questions and extract higher dimensional stimuli from the recordings. Modeling neural spike trains as point processes, this task of extracting dynamical signals from spike trains is commonly set in the context of nonlinear filtering theory. Particle filter methods relying on importance weights are generic algorithms that solve the filtering task numerically, but exhibit a serious drawback when the problem dimensionality is high: they are known to suffer from the 'curse of dimensionality' (COD), i.e. the number of particles required for a certain performance scales exponentially with the observable dimensions. Here, we first briefly review the theory on filtering with point process observations in continuous time. Based on this theory, we investigate both analytically and numerically the reason for the COD of weighted particle filtering approaches: Similarly to particle filtering with continuous-time observations, the COD with point-process observations is due to the decay of effective number of particles, an effect that is stronger when the number of observable dimensions increases. Given the success of unweighted particle filtering approaches in overcoming the COD for continuous- time observations, we introduce an unweighted particle filter for point-process observations, the spike-based Neural Particle Filter (sNPF), and show that it exhibits a similar favorable scaling as the number of dimensions grows. Further, we derive rules for the parameters of the sNPF from a maximum likelihood approach learning. We finally employ a simple decoding task to illustrate the capabilities of the sNPF and to highlight one possible future application of our inference and learning algorithm

    Markovian Dynamics on Complex Reaction Networks

    Full text link
    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underling population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions, the computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.Comment: 52 pages, 11 figures, for freely available MATLAB software, see http://www.cis.jhu.edu/~goutsias/CSS%20lab/software.htm

    Estimation of sentiment effects in financial markets: A simulated method of moments approach

    Full text link
    We take the model of Alfarano et al. (Journal of Economic Dynamics & Control 32, 2008, 101-136) as a prototype agent-based model that allows reproducing the main stylized facts of financial returns. The model does so by combining fundamental news driven by Brownian motion with a minimalistic mechanism for generating boundedly rational sentiment dynamics. Since we can approximate the herding component among an ensemble of agents in the aggregate by a Langevin equation, we can either simulate the model in full at the micro level, or investigate the impact of sentiment formation in an aggregate asset pricing equation. In the simplest version of our model, only three parameters need to be estimated. We estimate this model using a simulated method of moments (SMM) approach. As it turns out, sensible parameter estimates can only be obtained if one first provides a rough "mapping" of the objective function via an extensive grid search. Due to the high correlations of the estimated parameters, uninformed choices will often lead to a convergence to any one of a large number of local minima. We also find that even for large data sets and simulated samples, the efficiency of SMM remains distinctly inferior to that of GMM based on the same set of moments. We believe that this feature is due to the limited range of moments available in univariate asset pricing models, and that the sensitivity of the present model to the specification of the SMM estimator could carry over to many related agent-based models of financial markets as well as to similar diffusion processes in mathematical finance

    Inverse Problems and Data Assimilation

    Full text link
    These notes are designed with the aim of providing a clear and concise introduction to the subjects of Inverse Problems and Data Assimilation, and their inter-relations, together with citations to some relevant literature in this area. The first half of the notes is dedicated to studying the Bayesian framework for inverse problems. Techniques such as importance sampling and Markov Chain Monte Carlo (MCMC) methods are introduced; these methods have the desirable property that in the limit of an infinite number of samples they reproduce the full posterior distribution. Since it is often computationally intensive to implement these methods, especially in high dimensional problems, approximate techniques such as approximating the posterior by a Dirac or a Gaussian distribution are discussed. The second half of the notes cover data assimilation. This refers to a particular class of inverse problems in which the unknown parameter is the initial condition of a dynamical system, and in the stochastic dynamics case the subsequent states of the system, and the data comprises partial and noisy observations of that (possibly stochastic) dynamical system. We will also demonstrate that methods developed in data assimilation may be employed to study generic inverse problems, by introducing an artificial time to generate a sequence of probability measures interpolating from the prior to the posterior
    corecore