3,256 research outputs found

    Comparing Evolutionary Operators, Search Spaces, and Evolutionary Algorithms in the Construction of Facial Composites

    Get PDF
    Facial composite construction is one of the most successful applications of interactive evolutionary computation. In spite of this, previous work in the area of composite construction has not investigated the algorithm design options in detail. We address this issue with four experiments. In the first experiment a sorting task is used to identify the 12 most salient dimensions of a 30-dimensional search space. In the second experiment the performances of two mutation and two recombination operators for interactive genetic algorithms are compared. In the third experiment three search spaces are compared: a 30-dimensional search space, a mathematically reduced 12-dimensional search space, and a 12-dimensional search space formed from the 12 most salient dimensions. Finally, we compare the performances of an interactive genetic algorithm to interactive differential evolution. Our results show that the facial composite construction process is remarkably robust to the choice of evolutionary operator(s), the dimensionality of the search space, and the choice of interactive evolutionary algorithm. We attribute this to the imprecise nature of human face perception and differences between the participants in how they interact with the algorithms. Povzetek: Kompozitna gradnja obrazov je ena izmed najbolj uspešnih aplikacij interaktivnega evolucijskega ra?cunanja. Kljub temu pa do zdaj na podro?cju kompozitne gradnje niso bile podrobno raziskane možnosti snovanja algoritma. To vprašanje smo obravnavali s štirimi poskusi. V prvem je uporabljeno sortiranje za identifikacijo 12 najbolj izstopajo?cih dimenzij 30-dimenzionalnega preiskovalnega prostora. V drugem primerjamo u?cinkovitost dveh mutacij in dveh rekombinacijskih operaterjev za interaktivni genetski algoritem. V tretjem primerjamo tri preiskovalne prostore: 30-dimenzionalni, matemati?cno reducirani 12-dimenzionalni in 12-dimenzionalni prostor sestavljen iz 12 najpomembnejših dimenzij. Na koncu smo primerjali uspešnost interaktivnega genetskega algoritma z interaktivno diferencialno evolucijo. Rezultati kažejo, da je proces kompozitne gradnje obrazov izredno robusten glede na izbiro evolucijskega operatorja(-ev), dimenzionalnost preiskovalnega prostora in izbiro interaktivnega evolucijskega algoritma. To pripisujemo nenatan?cni naravi percepcije in razlikam med interakcijami uporabnikov z algoritmom

    Nitric oxide donation lowers blood pressure in adrenocorticotrophic hormone-induced hypertensive rats.

    No full text
    Adrenocorticotrophic hormone (ACTH) elevates systolic blood pressure (SBP) and lowers plasma reactive nitrogen intermediates in rats. We assessed the ability of NO donation from isosorbide dinitrate (ISDN) to prevent or reverse the hypertension caused by ACTH. In the prevention study, male Sprague Dawley rats were treated with ACTH (0.2 mg/kg/day) or saline control for 8 days, with either concurrent ISDN (100 mg/kg/day) via the drinking water or water alone. Animals receiving ISDN via the drinking water were provided with nitrate-free water for 8 hours every day. In the reversal study ISDN (100 mg/kg) or vehicle was given as a single oral dose on day 8. SBP was measured daily by the indirect tail-cuff method in conscious, restrained rats. ACTH caused a significant increase in SBP compared with saline (P < 0.0015). In the prevention study, chronic administration of ISDN (100 mg/kg/day) did not affect the SBP in either group. In the reversal study, ISDN significantly lowered SBP in ACTH-treated rats at 1 and 2.5 hours (132 +/- 3 mmHg (1 h) and 131 +/- 2 mmHg (2.5 h) versus 143 +/- 3 mmHg (0 h), P < 0.002), but not to control levels. It had no effect in control (saline treated) rats. In conclusion, the lowering of SBP by NO donation is consistent with the notion that ACTH-induced hypertension involves an impaired bioavailability or action of NO in vivo

    Training Echo State Networks with Regularization through Dimensionality Reduction

    Get PDF
    In this paper we introduce a new framework to train an Echo State Network to predict real valued time-series. The method consists in projecting the output of the internal layer of the network on a space with lower dimensionality, before training the output layer to learn the target task. Notably, we enforce a regularization constraint that leads to better generalization capabilities. We evaluate the performances of our approach on several benchmark tests, using different techniques to train the readout of the network, achieving superior predictive performance when using the proposed framework. Finally, we provide an insight on the effectiveness of the implemented mechanics through a visualization of the trajectory in the phase space and relying on the methodologies of nonlinear time-series analysis. By applying our method on well known chaotic systems, we provide evidence that the lower dimensional embedding retains the dynamical properties of the underlying system better than the full-dimensional internal states of the network

    Optimized bi-dimensional data projection for clustering visualization

    Get PDF
    We propose a new method to project n-dimensional data onto two dimensions, for visualization purposes. Our goal is to produce a bi-dimensional representation that better separate existing clusters. Accordingly, to generate this projection we apply Differential Evolution as a meta-heuristic to optimize a divergence measure of the projected data. This divergence measure is based on the Cauchy–Schwartz divergence, extended for multiple classes. It accounts for the separability of the clusters in the projected space using the Renyi entropy and Information Theoretical Clustering analysis. We test the proposed method on two synthetic and five real world data sets, obtaining well separated projected clusters in two dimensions. These results were compared with results generated by PCA and a recent likelihood based visualization method

    Balancing Exploitation And Exploration Search Behavior On Nature-Inspired Clustering Algorithms

    Get PDF
    Nature-inspired optimization-based clustering techniques are powerful, robust and more sophisticated than the conventional clustering methods due to their stochastic and heuristic characteristics. Unfortunately, these algorithms suffer with several drawbacks such as the tendency to be trapped or stagnate into local optima and slow convergence rates. The latter drawbacks are consequences of the difficulty in balancing the exploration and exploitation processes which directly affect the final quality of the clustering solutions. Hence, this research has proposed three enhanced frameworks, namely, Optimized Gravitational-based (OGC), Density-Based Particle Swarm Optimization (DPSO), and Variance-based Differential Evolution with an Optional Crossover (VDEO) frameworks for data clustering. In the OGC framework, the exhibited explorative search behavior of the Gravitational Clustering (GC) algorithm has been addressed by (i) eliminating the agent velocity accumulation, and (ii) integrating an initialization method of agents using variance and median to subrogate the exploration process. Moreover, the balance between the exploration and exploitation processes in the DPSO framework is considered using a combination of (i) a kernel density estimation technique associated with new bandwidth estimation method and (ii) estimated multi-dimensional gravitational learning coefficients. Lastly, (i) a single-based solution representation, (ii) a switchable mutation scheme, (iii) a vector-based estimation of the mutation factor, and (iv) an optional crossover strategy are proposed in the VDEO framework. The overall performances of the three proposed frameworks have been compared with several current state-of-the-art clustering algorithms on 15 benchmark datasets from the UCI repository. The experimental results are also thoroughly evaluated and verified via non-parametric statistical analysis. Based on the obtained experimental results, the OGC, DPSO, and VDEO frameworks achieved an average enhancement up to 24.36%, 9.38%, and 11.98% of classification accuracy, respectively. All the frameworks also achieved the first rank by the Friedman aligned-ranks (FA) test in all evaluation metrics. Moreover, the three frameworks provided convergent performances in terms of the repeatability. Meanwhile, the OGC framework obtained a significant performance in terms of the classification accuracy, where the VDEO framework presented a significant performance in terms of cluster compactness. On the other hand, the DPSO framework favored the balanced state by producing very competitive results compared to the OGC and DPSO in both evaluation metrics. As a conclusion, balancing the search behavior notably enhanced the overall performance of the three proposed frameworks and made each of them an excellent tool for data clustering

    Differential Evolution Approach to Detect Recent Admixture

    Full text link
    The genetic structure of human populations is extraordinarily complex and of fundamental importance to studies of anthropology, evolution, and medicine. As increasingly many individuals are of mixed origin, there is an unmet need for tools that can infer multiple origins. Misclassification of such individuals can lead to incorrect and costly misinterpretations of genomic data, primarily in disease studies and drug trials. We present an advanced tool to infer ancestry that can identify the biogeographic origins of highly mixed individuals. reAdmix is an online tool available at http://chcb.saban-chla.usc.edu/reAdmix/.Comment: presented at ISMB 2014, VariSI
    corecore