859 research outputs found

    A 12b 100MSps Split Pipeline ADC with Open-Loop Residue Amplification

    Get PDF
    The design of a low-power 12-bit 100MSps pipeline analog-to-digital converter (ADC) with open-loop residue amplification using the novel Split-ADC architecture is described. The choice of a 12b 100MSps specification targets medical applications such as portable ultrasound. For a representative ADC such as the ADS5270, the figure of merit (FOM) is approximately 1pJ/step and the power dissipation is 113mW. The use of an open-loop residue amplifier resulted in a FOM of 0.571pJ/step and a power dissipation of 11.2mW

    A jittered-sampling correction technique for ADCs

    Get PDF
    In Analogue to Digital Converters (ADCs) jittered sampling raises the noise floor; this leads to a decrease in its Signal to Noise ratio (SNR) and its effective number of bits (ENOB). This research studies a technique that compensate for the effects of sampling with a jittered clock. A thorough understanding of sampling in various data converters is complied

    Design and Analysis of a Low-Power 8-Bit 500 KS/S SAR ADC for Bio-Medical Implant Devices

    Get PDF
    This thesis project involves the design and analysis of an 8-bit Successive Approximation Register (SAR) Analog to Digital Convertor (ADC), designed for low- power applications such as bio-medical implants. The sampling rate for this ADC is 500 KS/s. The power consumption for the whole SAR ADC system was measured to be 2.1 uW. The novelty of this project is the proposal of an extremely energy efficient comparator architecture. The result is the design of a final ADC with reasonable sampling speed, accuracy and low power consumption. In this project, all the different subsystems have been designed at the transistor level with 45 nm CMOS technology. The logical circuit was designed using Verilog language. It was then synthesized and integrated in the overall system

    Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs

    Get PDF
    This Dissertation focusses on proving that background calibration using adaptive algorithms are low-cost, stable and effective methods for obtaining high accuracy in flash A/D converters. An integrated reference-less 3-bit flash ADC circuit has been successfully designed and taped out in UMC 180 nm CMOS technology in order to prove the efficiency of our proposed background calibration. References for ADC transitions have been virtually implemented built-in in the comparators dynamic-latch topology by a controlled mismatch added to each comparator input front-end. An external very simple DAC block (calibration bank) allows control the quantity of mismatch added in each comparator front-end and, therefore, compensate the offset of its effective transition with respect to the nominal value. In order to assist to the estimation of the offset of the prototype comparators, an auxiliary A/D converter with higher resolution and lower conversion speed than the flash ADC is used: a 6-bit capacitive-DAC SAR type. Special care in synchronization of analogue sampling instant in both ADCs has been taken into account. In this thesis, a criterion to identify the optimum parameters of the flash ADC design with adaptive background calibration has been set. With this criterion, the best choice for dynamic latch architecture, calibration bank resolution and flash ADC resolution are selected. The performance of the calibration algorithm have been tested, providing great programmability to the digital processor that implements the algorithm, allowing to choose the algorithm limits, accuracy and quantization errors in the arithmetic. Further, systematic controlled offset can be forced in the comparators of the flash ADC in order to have a more exhaustive test of calibration

    Aika-digitaalimuunnin laajakaistaisiin aikapohjaisiin analogia-digitaalimuuntimiin

    Get PDF
    Modern deeply scaled semiconductor processes make the design of voltage-domain circuits increasingly challenging. On the contrary, the area and power consumption of digital circuits are improving with every new process node. Consequently, digital solutions are designed in place of their purely analog counterparts in applications such as analog-to-digital (A/D) conversion. Time-based analog-to-digital converters (ADC) employ digital-intensive architectures by processing analog quantities in time-domain. The quantization step of the time-based A/D-conversion is carried out by a time-to-digital converter (TDC). A free-running ring oscillator -based TDC design is presented for use in wideband time-based ADCs. The proposed architecture aims to maximize time resolution and full-scale range, and to achieve error resilient conversion performance with minimized power and area consumptions. The time resolution is maximized by employing a high-frequency multipath ring oscillator, and the full-scale range is extended using a high-speed gray counter. The error resilience is achieved by custom sense-amplifier -based sampling flip-flops, gray coded counter and a digital error correction algorithm for counter sampling error correction. The implemented design achieves up to 9-bit effective resolution at 250 MS/s with 4.3 milliwatt power consumption.Modernien puolijohdeteknologioiden skaalautumisen seurauksena jännitetason piirien suunnittelu tulee entistä haasteellisemmaksi. Toisaalta digitaalisten piirirakenteiden pinta-ala sekä tehonkulutus pienenevät prosessikehityksen myötä. Tästä syystä digitaalisia ratkaisuja suunnitellaan vastaavien puhtaasti analogisien rakenteiden tilalle. Analogia-digitaalimuunnos (A/D-muunnos) voidaan toteuttaa jännitetason sijaan aikatasossa käyttämällä aikapohjaisia A/D-muuntimia, jotka ovat rakenteeltaan pääosin digitaalisia. Kvantisointivaihe aikapohjaisessa A/D-muuntimessa toteutetaan aika-digitaalimuuntimella. Työ esittelee vapaasti oskilloivaan silmukkaoskillaattoriin perustuvan aika-digitaalimuuntimen, joka on suunniteltu käytettäväksi laajakaistaisessa aikapohjaisessa A/D-muuntimessa. Esitelty rakenne pyrkii maksimoimaan muuntimen aikaresoluution sekä muunnosalueen, sekä saavuttamaan virhesietoisen muunnostoiminnan minimoidulla tehon sekä pinta-alan kulutuksella. Aikaresoluutio on maksimoitu hyödyntämällä suuritaajuista monipolkuista silmukkaoskillaattoria, ja muunnosalue on maksimoitu nopealla Gray-koodi -laskuripiirillä. Muunnosprosessin virhesietoisuus on saavutettu toteuttamalla näytteistys herkillä kiikkuelementeillä, hyödyntämällä Gray-koodattua laskuria, sekä jälkiprosessoimalla laskurin näytteistetyt arvot virheenkorjausalgoritmilla. Esitelty muunnintoteutus saavuttaa 9 bitin efektiivisen resoluution 250 MS/s näytetaajuudella ja 4.3 milliwatin tehonkulutuksella

    A Low-Power, Reconfigurable, Pipelined ADC with Automatic Adaptation for Implantable Bioimpedance Applications

    Get PDF
    Biomedical monitoring systems that observe various physiological parameters or electrochemical reactions typically cannot expect signals with fixed amplitude or frequency as signal properties can vary greatly even among similar biosignals. Furthermore, advancements in biomedical research have resulted in more elaborate biosignal monitoring schemes which allow the continuous acquisition of important patient information. Conventional ADCs with a fixed resolution and sampling rate are not able to adapt to signals with a wide range of variation. As a result, reconfigurable analog-to-digital converters (ADC) have become increasingly more attractive for implantable biosensor systems. These converters are able to change their operable resolution, sampling rate, or both in order convert changing signals with increased power efficiency. Traditionally, biomedical sensing applications were limited to low frequencies. Therefore, much of the research on ADCs for biomedical applications focused on minimizing power consumption with smaller bias currents resulting in low sampling rates. However, recently bioimpedance monitoring has become more popular because of its healthcare possibilities. Bioimpedance monitoring involves injecting an AC current into a biosample and measuring the corresponding voltage drop. The frequency of the injected current greatly affects the amplitude and phase of the voltage drop as biological tissue is comprised of resistive and capacitive elements. For this reason, a full spectrum of measurements from 100 Hz to 10-100 MHz is required to gain a full understanding of the impedance. For this type of implantable biomedical application, the typical low power, low sampling rate analog-to-digital converter is insufficient. A different optimization of power and performance must be achieved. Since SAR ADC power consumption scales heavily with sampling rate, the converters that sample fast enough to be attractive for bioimpedance monitoring do not have a figure-of-merit that is comparable to the slower converters. Therefore, an auto-adapting, reconfigurable pipelined analog-to-digital converter is proposed. The converter can operate with either 8 or 10 bits of resolution and with a sampling rate of 0.1 or 20 MS/s. Additionally, the resolution and sampling rate are automatically determined by the converter itself based on the input signal. This way, power efficiency is increased for input signals of varying frequency and amplitude

    A Pipeline Analog-To-Digital Converter for a Plasma Impedance Probe

    Get PDF
    Space instrumentation technology is an essential tool for rocket and satellite research, and is expected to become popular in commercial and military operations in fields such as radar, imaging, and communications. These instruments are traditionally implemented on printed circuit boards using discrete general-purpose Analog-to-Digital Converter (ADC) devices and other components. A large circuit board is not convenient for use in micro-satellite deployments, where the total payload volume is limited to roughly one cubic foot. Because micro-satellites represent a fast growing trend in satellite research and development, there is motivation to explore miniaturized custom application-specific integrated circuit (ASIC) designs to reduce the volume and power consumption occupied by instrument electronics. In this thesis, a model of a new Plasma Impedance Probe (PIP) architecture, which utilizes a custom-built ADC along with other analog and digital components, is proposed. The model can be fully integrated to produce a low-power, miniaturized impedance probe
    corecore