30,031 research outputs found

    An Algorithm for Computing the Limit Points of the Quasi-component of a Regular Chain

    Full text link
    For a regular chain RR, we propose an algorithm which computes the (non-trivial) limit points of the quasi-component of RR, that is, the set W(R)ˉ∖W(R)\bar{W(R)} \setminus W(R). Our procedure relies on Puiseux series expansions and does not require to compute a system of generators of the saturated ideal of RR. We focus on the case where this saturated ideal has dimension one and we discuss extensions of this work in higher dimensions. We provide experimental results illustrating the benefits of our algorithms

    Review of Summation-by-parts schemes for initial-boundary-value problems

    Full text link
    High-order finite difference methods are efficient, easy to program, scales well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback have been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years have removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area

    Sticky Brownian Rounding and its Applications to Constraint Satisfaction Problems

    Get PDF
    Semidefinite programming is a powerful tool in the design and analysis of approximation algorithms for combinatorial optimization problems. In particular, the random hyperplane rounding method of Goemans and Williamson has been extensively studied for more than two decades, resulting in various extensions to the original technique and beautiful algorithms for a wide range of applications. Despite the fact that this approach yields tight approximation guarantees for some problems, e.g., Max-Cut, for many others, e.g., Max-SAT and Max-DiCut, the tight approximation ratio is still unknown. One of the main reasons for this is the fact that very few techniques for rounding semidefinite relaxations are known. In this work, we present a new general and simple method for rounding semi-definite programs, based on Brownian motion. Our approach is inspired by recent results in algorithmic discrepancy theory. We develop and present tools for analyzing our new rounding algorithms, utilizing mathematical machinery from the theory of Brownian motion, complex analysis, and partial differential equations. Focusing on constraint satisfaction problems, we apply our method to several classical problems, including Max-Cut, Max-2SAT, and MaxDiCut, and derive new algorithms that are competitive with the best known results. To illustrate the versatility and general applicability of our approach, we give new approximation algorithms for the Max-Cut problem with side constraints that crucially utilizes measure concentration results for the Sticky Brownian Motion, a feature missing from hyperplane rounding and its generalization

    Convergence of summation-by-parts finite difference methods for the wave equation

    Full text link
    In this paper, we consider finite difference approximations of the second order wave equation. We use finite difference operators satisfying the summation-by-parts property to discretize the equation in space. Boundary conditions and grid interface conditions are imposed by the simultaneous-approximation-term technique. Typically, the truncation error is larger at the grid points near a boundary or grid interface than that in the interior. Normal mode analysis can be used to analyze how the large truncation error affects the convergence rate of the underlying stable numerical scheme. If the semi-discretized equation satisfies a determinant condition, two orders are gained from the large truncation error. However, many interesting second order equations do not satisfy the determinant condition. We then carefully analyze the solution of the boundary system to derive a sharp estimate for the error in the solution and acquire the gain in convergence rate. The result shows that stability does not automatically yield a gain of two orders in convergence rate. The accuracy analysis is verified by numerical experiments.Comment: In version 2, we have added a new section on the convergence analysis of the Neumann problem, and have improved formulations in many place
    • …
    corecore