4,519 research outputs found

    Design of log domain differential class AB universal biquad filter by employing lossy integrators

    Get PDF
    A new current mode low voltage differential Class AB second order universal biquad filter has been designed in this work. In design process, inspiring from Kerwin-Huelsman-Newcomb circuit, the circuit is realized with lossy integrators. The circuit has fundamental filter outputs namely; low pass, high pass and band pass. All pass and notch filter outputs have also been obtained by using additional circuits. In circuit design process, the state space method and translinear principle have been used. Two of the circuit parameters are electronically tunable which are the quality factor Q and the pole frequency f0. PSpice circuit simulations have been obtained to check the theoretical results’ validity. In PSpice simulations, both ideal and AT&T CBIC-R type real transistor models have been used

    CMOS Hyperbolic Sine ELIN filters for low/audio frequency biomedical applications

    Get PDF
    Hyperbolic-Sine (Sinh) filters form a subclass of Externally-Linear-Internally-Non- Linear (ELIN) systems. They can handle large-signals in a low power environment under half the capacitor area required by the more popular ELIN Log-domain filters. Their inherent class-AB nature stems from the odd property of the sinh function at the heart of their companding operation. Despite this early realisation, the Sinh filtering paradigm has not attracted the interest it deserves to date probably due to its mathematical and circuit-level complexity. This Thesis presents an overview of the CMOS weak inversion Sinh filtering paradigm and explains how biomedical systems of low- to audio-frequency range could benefit from it. Its dual scope is to: consolidate the theory behind the synthesis and design of high order Sinh continuous–time filters and more importantly to confirm their micro-power consumption and 100+ dB of DR through measured results presented for the first time. Novel high order Sinh topologies are designed by means of a systematic mathematical framework introduced. They employ a recently proposed CMOS Sinh integrator comprising only p-type devices in its translinear loops. The performance of the high order topologies is evaluated both solely and in comparison with their Log domain counterparts. A 5th order Sinh Chebyshev low pass filter is compared head-to-head with a corresponding and also novel Log domain class-AB topology, confirming that Sinh filters constitute a solution of equally high DR (100+ dB) with half the capacitor area at the expense of higher complexity and power consumption. The theoretical findings are validated by means of measured results from an 8th order notch filter for 50/60Hz noise fabricated in a 0.35μm CMOS technology. Measured results confirm a DR of 102dB, a moderate SNR of ~60dB and 74μW power consumption from 2V power supply

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Log-domain Universal Biquad Filter Design Using Lossy Integrators

    Get PDF
    In this paper, a new current mode low voltage log domain Class A universal biquad filter is proposed. The proposed circuit is derived from the block diagram based on Kerwin-Huelsman-Newcomb (KHN) circuit using lossy integrators. The circuit can provide second-order low pass,band pass and high pass filter characteristics. State space method and translinear principle is used for circuit synthesis.The natural frequency f0 and quality factor Q of the circuit is electronically tunable by varying amplitudes of the current sources. PSpice simulation results are given in order to verify the theoretical analysis. The simulations are performed with both ideal transistor models and AT&T CBIC-R type real transistor models

    Single-input Multiple-output Tunable Log-domain Current-mode Universal Filter

    Get PDF
    This paper describes the design of a current-mode single-input multiple-output (SIMO) universal filter based on the log-domain filtering concept. The circuit is a direct realization of a first-order differential equation for obtaining the lossy integrator circuit. Lossless integrators are realized by log-domain lossy integrators. The proposed filter comprises only two grounded capacitors and twenty-four transistors. This filter suits to operate in very high frequency (VHF) applications. The pole-frequency of the proposed filter can be controlled over five decade frequency range through bias currents. The pole-Q can be independently controlled with the pole-frequency. Non-ideal effects on the filter are studied in detail. A validated BJT model is used in the simulations operated by a single power supply, as low as 2.5 V. The simulation results using PSpice are included to confirm the good performances and are in agreement with the theory

    Log-domain All-pass Filter-based Multiphase Sinusoidal Oscillators

    Get PDF
    Log-domain current-mode multiphase sinusoidal oscillators based on all-pass filters are presented in this paper. The first-order differential equation is used for obtaining inverting and non-inverting all-pass filters. The proposed oscillators are realized by all-pass filters which can be electronically tuned their natural frequency and stage gain by adjusting the bias currents. Each all pass filter contains 10 NPN transistors and a grounded capacitor. The validated BJT model which used in SPICE simulation operated by a single power supply as low as 2.5 V. The frequency of oscillation can be controlled over four decades. The total harmonic distortions of these MSO at frequency 56.67 MHz and 54.44 MHz, obtained around 0.52% and 0.75%, respectively. The proposed circuits enable fully integrated in telecommunication systems and also suit to high-frequency applications. Nonideality studies and PSpice simulation results are included to confirm the theory

    Pseudo-Stereo Audio Processor

    Get PDF
    Due to both technical and resource limitations, non-professional audio production must often record with a single microphone, creating a mono audio signal. Even some originally multi-channel audio files often combine the separate channels into a single channel to save memory. However, this channel limitation makes any music held within the audio duller during listening. The Pseudo-Stereo Audio Processor remedies this situation, introducing a quadrature phase shift onto a given single-channel audio signal, producing multiple phase shifted output signals. These separate fixed-phase output signals are then recombined to produce a variable phase difference, emulated two-channel version of the input signal, allowing for an easy post-production sound quality enhancement of a single-channel signal that independent or small-scale audio recording studios could utilize. Further, this method of quadrature filtering produces completely decorrelated output signals using a Hilbert Transform, creating unique auditory effects useful in certain aspects of psychoacoustic research much harder to obtain through other means

    Analogue CMOS Cochlea Systems: A Historic Retrospective

    Get PDF

    Power-efficient current-mode analog circuits for highly integrated ultra low power wireless transceivers

    Get PDF
    In this thesis, current-mode low-voltage and low-power techniques have been applied to implement novel analog circuits for zero-IF receiver backend design, focusing on amplification, filtering and detection stages. The structure of the thesis follows a bottom-up scheme: basic techniques at device level for low voltage low power operation are proposed in the first place, followed by novel circuit topologies at cell level, and finally the achievement of new designs at system level. At device level the main contribution of this work is the employment of Floating-Gate (FG) and Quasi-Floating-Gate (QFG) transistors in order to reduce the power consumption. New current-mode basic topologies are proposed at cell level: current mirrors and current conveyors. Different topologies for low-power or high performance operation are shown, being these circuits the base for the system level designs. At system level, novel current-mode amplification, filtering and detection stages using the former mentioned basic cells are proposed. The presented current-mode filter makes use of companding techniques to achieve high dynamic range and very low power consumption with for a very wide tuning range. The amplification stage avoids gain bandwidth product achieving a constant bandwidth for different gain configurations using a non-linear active feedback network, which also makes possible to tune the bandwidth. Finally, the proposed current zero-crossing detector represents a very power efficient mixed signal detector for phase modulations. All these designs contribute to the design of very low power compact Zero-IF wireless receivers. The proposed circuits have been fabricated using a 0.5ÎĽm double-poly n-well CMOS technology, and the corresponding measurement results are provided and analyzed to validate their operation. On top of that, theoretical analysis has been done to fully explore the potential of the resulting circuits and systems in the scenario of low-power low-voltage applications.Programa Oficial de Doctorado en TecnologĂ­as de las Comunicaciones (RD 1393/2007)Komunikazioen Teknologietako Doktoretza Programa Ofiziala (ED 1393/2007
    • …
    corecore