1,873 research outputs found

    Development of suspended thermoreflectance technique and its application in thermal property measurement of semiconductor materials

    Get PDF
    Doctor of PhilosophyDepartment of Mechanical and Nuclear EngineeringGurpreet SinghThis dissertation details the development of a new scientific tool for the thermal characterization of freestanding micro/nano-scale materials, with specific application to thin films. The tool consists of a custom-designed and calibrated opto-electric system with superior spatial and temporal resolutions in thermal measurement. The tool, termed as Suspended ThermoReflectance (STR), can successfully perform thermal mappings at the submicron level and is able to produce unconstrained thermal conductivity unlike other optical measurement techniques where independent conductivity measurement is not possible due to their reliance on heat capacity. STR works by changing the temperature of a material and collecting the associated change in light reflection from multiple points on the sample surface. The reflection is a function of the material being tested, the wavelength of the probe light and the composition of the specimen for transparent and quasi-transparent materials. Coupling the change in reflection, along the sample’s length, with the knowledge of heat conduction allows for the determination of the thermal properties of interest. A thermal analytical model is developed and incorporated with optical equations to characterize the conductivity of thin films. The analytical model is compared with a finite element model to check its applicability in the STR experiment and data analysis. Ultimately, thermal conductivity of 2 ”m and 3 ”m thick Si samples were determined using STR at a temperature range of 20K – 350K and compared to literature as a validation of the technique. The system was automated using a novel LabView-based program. This program allowed the user to control the equipment including electronics, optics and optical cryostat. Moreover, data acquisition and real-time monitoring of the system are also accomplished through this computer application. A description of the development, fabrication and characterization of the freestanding thin films is detailed in this dissertation. For the most part, the thin films were fabricated using standard microfabrication techniques. However, different dry and wet etching techniques were compared for minimum surface roughness to reduce light scattering. The best etching technique was used to trim the Si films for the desired thicknesses. Besides, vapor HF was used to avoid stiction-failure during the release of suspended films

    Silicon-basedI nanostructures: Growth and Characterizations of Si2Te3 nanowires and nanoplates

    Get PDF
    Silicon-basedI nanostructures: Growth and Characterizations of Si2Te3 nanowires and nanoplate

    Characteristics of nanocomposites and semiconductor heterostructure wafers using THz spectroscopy

    Get PDF
    All optical, THz-Time Domain Spectroscopic (THz-TDS) methods were employed towards determining the electrical characteristics of Single Walled Carbon Nanotubes, Ion Implanted Si nanoclusters and Si1-xGex HFO2, SiO2 on p-type Si wafers. For the nanoscale composite materials, Visible Pump/THz Probe spectroscopy measurements were performed after observing that the samples were not sensitive to the THz radiation alone. The results suggest that the photoexcited nanotubes exhibit localized transport due to Lorentz-type photo-induced localized states from 0.2 to 0.7THz. The THz transmission is modeled through the photoexcited layer with an effective dielectric constant described by a Drude + Lorentz model and given by Maxwell-Garnett theory. Comparisons are made with other prevalent theories that describe electronic transport. Similar experiments were repeated for ion-implanted, 3-4nm Si nanoclusters in fused silica for which a similar behavior was observed. In addition, a change in reflection from Si1-xGex on Si, 200mm diameter semiconductor heterostructure wafers with 10% or 15% Ge content, was measured using THz-TDS methods. Drude model is utilized for the transmission/reflection measurements and from the reflection data the mobility of each wafer is estimated. Furthermore, the effect of high-K dielectric material (HfO2) on the electrical properties of p-type silicon wafers was characterized by utilizing non-contact, differential (pump-pump off) spectroscopic methods to differ between HfO2 and SiO2 on Si wafers. The measurements are analyzed in two distinct transmission models, where one is an exact representation of the layered structure for each wafer and the other assumed that the response observed from the differential THz transmission was solely due to effects from interfacial traps between the dielectric layer and the substrate. The latter gave a more accurate picture of the carrier dynamics. From these measurements the effect of interfacial defects on transmission and mobility are quantitatively discussed

    Spin dynamics in van der Waals magnetic systems

    Get PDF
    The discovery of atomic monolayer magnetic materials has stimulated intense research activities in the two-dimensional (2D) van der Waals (vdW) materials community. The field is growing rapidly and there has been a large class of 2D vdW magnetic compounds with unique properties, which provides an ideal platform to study magnetism in the atomically thin limit. In parallel, based on tunneling magnetoresistance and magneto-optical effect in 2D vdW magnets and their heterostructures, emerging concepts of spintronic and optoelectronic applications such as spin tunnel field-effect transistors and spin-filtering devices are explored. While the magnetic ground state has been extensively investigated, reliable characterization and control of spin dynamics play a crucial role in designing ultrafast spintronic devices. Ferromagnetic resonance (FMR) allows direct measurements of magnetic excitations, which provides insight into the key parameters of magnetic properties such as exchange interaction, magnetic anisotropy, gyromagnetic ratio, spin–orbit coupling, damping rate, and domain structure. In this review article, we present an overview of the essential progress in probing spin dynamics of 2D vdW magnets using FMR techniques. Given the dynamic nature of this field, we focus mainly on broadband FMR, optical FMR, and spin-torque FMR, and their applications in studying prototypical 2D vdW magnets. We conclude with the recent advances in laboratory- and synchrotron-based FMR techniques and their opportunities to broaden the horizon of research pathways into atomically thin magnets

    Recent Progress on Exciton Polaritons in Layered Transition‐Metal Dichalcogenides

    Get PDF
    Exciton polaritons (EPs) are half‐light, half‐matter quasiparticles formed due to the coupling between photons and excitons in semiconductors. Their uniqueness lies at the strong light–matter interactions and long‐distance transport, thus promising for many novel applications in photonics, information, and quantum technologies. Recently, EPs in group‐VI transition‐metal dichalcogenides (TMDs) have attracted a lot of research interest due to their room‐temperature stability, long‐distance propagation, and controllability through electric gating, valley‐selective optical pumping, and precise thickness control. In this progress report, recent studies of EPs in TMDs are reviewed, highlighting their key properties and functionalities, and then discussing the potential directions for future research
    • 

    corecore