1,567 research outputs found

    Autonomic arousal and attentional orienting to visual threat are predicted by awareness

    Get PDF
    The rapid detection and evaluation of threat is of fundamental importance for survival. Theories suggest that this evolutionary pressure has driven functional adaptations in a specialized visual pathway that evaluates threat independently of conscious awareness. This is supported by evidence that threat-relevant stimuli rendered invisible by backward masking can induce physiological fear responses and modulate spatial attention. The validity of these findings has since been questioned by research using stringent, objective measures of awareness. Here, we use a modified continuous flash suppression paradigm to ask whether threatening images induce adaptive changes in autonomic arousal, attention, or perception when presented outside of awareness. In trials where stimuli broke suppression to become visible, threatening stimuli induced a significantly larger skin conductance response than nonthreatening stimuli and attracted spatial attention over scrambled images. However, these effects were eliminated in trials where observers were unaware of the stimuli. In addition, concurrent behavioral data provided no evidence that threatening images gained prioritized access to awareness. Taken together, our data suggest that the evaluation and spatial detection of visual threat are predicted by awareness

    Impact of schizophrenia on anterior and posterior hippocampus during memory for complex scenes.

    Get PDF
    ObjectivesHippocampal dysfunction has been proposed as a mechanism for memory deficits in schizophrenia. Available evidence suggests that the anterior and posterior hippocampus could be differentially affected. Accordingly, we used fMRI to test the hypothesis that activity in posterior hippocampus is disproportionately reduced in schizophrenia, particularly during spatial memory retrieval.Methods26 healthy participants and 24 patients with schizophrenia from the UC Davis Early Psychosis Program were studied while fMRI was acquired on a 3 Tesla Siemens scanner. During encoding, participants were oriented to critical items through questions about item features (e.g., "Does the lamp have a square shade?") or spatial location (e.g., "Is the lamp on the table next to the couch?"). At test, participants determined whether scenes were changed or unchanged. fMRI analyses contrasted activation in a priori regions of interest (ROI) in anterior and posterior hippocampus during correct recognition of item changes and spatial changes.ResultsAs predicted, patients with schizophrenia exhibited reduced activation in the posterior hippocampus during detection of spatial changes but not during detection of item changes. Unexpectedly, patients exhibited increased activation of anterior hippocampus during detection of item changes. Whole brain analyses revealed reduced fronto-parietal and striatal activation in patients for spatial but not for item change trials.ConclusionsResults suggest a gradient of hippocampal dysfunction in which posterior hippocampus - which is necessary for processing fine-grained spatial relationships - is underactive, and anterior hippocampus - which may process context more globally - is overactive

    Emotional facial expressions evoke faster orienting responses, but weaker emotional responses at neural and behavioural levels compared to scenes: A simultaneous EEG and facial EMG study

    Get PDF
    AbstractIn the current study, electroencephalography (EEG) was recorded simultaneously with facial electromyography (fEMG) to determine whether emotional faces and emotional scenes are processed differently at the neural level. In addition, it was investigated whether these differences can be observed at the behavioural level via spontaneous facial muscle activity. Emotional content of the stimuli did not affect early P1 activity. Emotional faces elicited enhanced amplitudes of the face-sensitive N170 component, while its counterpart, the scene-related N100, was not sensitive to emotional content of scenes. At 220–280ms, the early posterior negativity (EPN) was enhanced only slightly for fearful as compared to neutral or happy faces. However, its amplitudes were significantly enhanced during processing of scenes with positive content, particularly over the right hemisphere. Scenes of positive content also elicited enhanced spontaneous zygomatic activity from 500–750ms onwards, while happy faces elicited no such changes. Contrastingly, both fearful faces and negative scenes elicited enhanced spontaneous corrugator activity at 500–750ms after stimulus onset. However, relative to baseline EMG changes occurred earlier for faces (250ms) than for scenes (500ms) whereas for scenes activity changes were more pronounced over the whole viewing period. Taking into account all effects, the data suggests that emotional facial expressions evoke faster attentional orienting, but weaker affective neural activity and emotional behavioural responses compared to emotional scenes

    Electrophysiological Evidence for Impaired Attentional Engagement with Phonologically Acceptable Misspellings in Developmental Dyslexia

    Get PDF
    Event-related potential (ERP) studies of word recognition have provided fundamental insights into the time-course and stages of visual and auditory word form processing in reading. Here, we used ERPs to track the time-course of phonological processing in dyslexic adults and matched controls. Participants engaged in semantic judgments of visually presented high-cloze probability sentences ending either with (a) their best completion word, (b) a homophone of the best completion, (c) a pseudohomophone of the best completion, or (d) an unrelated word, to examine the interplay of phonological and orthographic processing in reading and the stage(s) of processing affected in developmental dyslexia. Early ERP peaks (N1, P2, N2) were modulated in amplitude similarly in the two groups of participants. However, dyslexic readers failed to show the P3a modulation seen in control participants for unexpected homophones and pseudohomophones (i.e., sentence completions that are acceptable phonologically but are misspelt). Furthermore, P3a amplitudes significantly correlated with reaction times in each experimental condition. Our results showed no sign of a deficit in accessing phonological representations during reading, since sentence primes yielded phonological priming effects that did not differ between participant groups in the early phases of processing. On the other hand, we report new evidence for a deficient attentional engagement with orthographically unexpected but phonologically expected words in dyslexia, irrespective of task focus on orthography or phonology. In our view, this result is consistent with deficiency in reading occurring from the point at which attention is oriented to phonological analysis, which may underlie broader difficulties in sublexical decoding

    No Effect of cathodal tDCS of the posterior parietal cortex on parafoveal preprocessing of words

    Get PDF
    Abstract The present study investigated the functional role of the posterior parietal cortex during the processing of parafoveally presented letter strings. To this end, we simultaneously presented two letter strings (word or pseudoword) – one foveally and one parafoveally – and asked the participants to indicate the presence of a word (i.e., lexical decision flanker task). We applied cathodal transcranial direct current stimulation (tDCS) over the posterior parietal cortex in order to establish causal links between brain activity and lexical decision performance (accuracy and latency). The results indicated that foveal stimulus difficulty affected the amount of parafoveally processed information. Bayes factor analysis showed no effects of brain stimulation suggesting that posterior parietal cathodal tDCS does not modulate attention-related processes during parafoveal preprocessing. This result is discussed in the context of recent tDCS studies on attention and performance
    • …
    corecore