517,453 research outputs found

    Differential rotation of nonlinear r-modes

    Full text link
    Differential rotation of r-modes is investigated within the nonlinear theory up to second order in the mode amplitude in the case of a slowly-rotating, Newtonian, barotropic, perfect-fluid star. We find a nonlinear extension of the linear r-mode, which represents differential rotation that produces large scale drifts of fluid elements along stellar latitudes. This solution includes a piece induced by first-order quantities and another one which is a pure second-order effect. Since the latter is stratified on cylinders, it cannot cancel differential rotation induced by first-order quantities, which is not stratified on cylinders. It is shown that, unlikely the situation in the linearized theory, r-modes do not preserve vorticity of fluid elements at second-order. It is also shown that the physical angular momentum and energy of the perturbation are, in general, different from the corresponding canonical quantities.Comment: 9 pages, revtex4; section III revised, comments added in Introduction and Conclusions, references updated; to appear in Phys. Rev.

    Response of the common mode of interferometric detectors to a stochastic background of massive scalar radiation

    Full text link
    We compute the angular pattern and the overlap reduction functions for the geodesic and non-geodesic response of the common mode of two interferometers interacting with a stochastic, massive scalar background. We also discuss the possible overlap between common and differential modes. We find that the cross-correlated response of two common modes to a non-relativistic background may be higher than the response of two differential modes to the same background.Comment: 8 pages, 4 figures, revte

    Rossby-Haurwitz waves of a slowly and differentially rotating fluid shell

    Full text link
    Recent studies have raised doubts about the occurrence of r modes in Newtonian stars with a large degree of differential rotation. To assess the validity of this conjecture we have solved the eigenvalue problem for Rossby-Haurwitz waves (the analogues of r waves on a thin-shell) in the presence of differential rotation. The results obtained indicate that the eigenvalue problem is never singular and that, at least for the case of a thin-shell, the analogues of r modes can be found for arbitrarily large degrees of differential rotation. This work clarifies the puzzling results obtained in calculations of differentially rotating axi-symmetric Newtonian stars.Comment: 8pages, 3figures. Submitted to CQ

    Effects of Uniform and Differential Rotation on Stellar Pulsations

    Full text link
    We have investigated the effects of uniform rotation and a specific model for differential rotation on the pulsation frequencies of 10 \Msun\ stellar models. Uniform rotation decreases the frequencies for all modes. Differential rotation does not appear to have a significant effect on the frequencies, except for the most extreme differentially rotating models. In all cases, the large and small separations show the effects of rotation at lower velocities than do the individual frequencies. Unfortunately, to a certain extent, differential rotation mimics the effects o f more rapid rotation, and only the presence of some specific observed frequencies with well identified modes will be able to uniquely constrain the internal rotation of pulsating stars.Comment: 33 pages, 16 figures. Accepted for publication in Ap

    Nonlinear modes of clarinet-like musical instruments

    Full text link
    The concept of nonlinear modes is applied in order to analyze the behavior of a model of woodwind reed instruments. Using a modal expansion of the impedance of the instrument, and by projecting the equation for the acoustic pressure on the normal modes of the air column, a system of second order ordinary differential equations is obtained. The equations are coupled through the nonlinear relation describing the volume flow of air through the reed channel in response to the pressure difference across the reed. The system is treated using an amplitude-phase formulation for nonlinear modes, where the frequency and damping functions, as well as the invariant manifolds in the phase space, are unknowns to be determined. The formulation gives, without explicit integration of the underlying ordinary differential equation, access to the transient, the limit cycle, its period and stability. The process is illustrated for a model reduced to three normal modes of the air column

    Pattern Formation by Boundary Forcing in Convectively Unstable, Oscillatory Media With and Without Differential Transport

    Full text link
    Motivated by recent experiments and models of biological segmentation, we analyze the exicitation of pattern-forming instabilities of convectively unstable reaction-diffusion-advection (RDA) systems, occuring by means of constant or periodic forcing at the upstream boundary. Such boundary-controlled pattern selection is a generalization of the flow-distributed oscillation (FDO) mechanism that can include Turing or differential flow instability (DIFI) modes. Our goal is to clarify the relationships among these mechanisms in the general case where there is differential flow as well as differential diffusion. We do so by analyzing the dispersion relation for linear perturbations and showing how its solutions are affected by differential transport. We find a close relationship between DIFI and FDO, while the Turing mechanism gives rise to a distinct set of unstable modes. Finally, we illustrate the relevance of the dispersion relations using nonlinear simulations and we discuss the experimental implications of our results.Comment: Revised version with added content (new section and figures added), changes to wording and organizatio

    Characterization of a Differential Radio-Frequency Single-Electron Transistor

    Full text link
    We have fabricated and characterized a new type of electrometer that couples two parallel single-electron transistors (SETs) to a radio-frequency tank circuit for use as a differential RF-SET. We demonstrate operation of this device in summing, differential, and single-SET operation modes, and use it to measure a Coulomb staircase from a differential single Cooper-pair box. In differential mode, the device is sensitive to uncorrelated input signals while screening out correlated ones.Comment: 3 pages, 3 figures, submitted to Applied Physics Letter
    • …
    corecore