459 research outputs found

    Hypergraph conditions for the solvability of the ergodic equation for zero-sum games

    Full text link
    The ergodic equation is a basic tool in the study of mean-payoff stochastic games. Its solvability entails that the mean payoff is independent of the initial state. Moreover, optimal stationary strategies are readily obtained from its solution. In this paper, we give a general sufficient condition for the solvability of the ergodic equation, for a game with finite state space but arbitrary action spaces. This condition involves a pair of directed hypergraphs depending only on the ``growth at infinity'' of the Shapley operator of the game. This refines a recent result of the authors which only applied to games with bounded payments, as well as earlier nonlinear fixed point results for order preserving maps, involving graph conditions.Comment: 6 pages, 1 figure, to appear in Proc. 54th IEEE Conference on Decision and Control (CDC 2015

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy

    Prime splittings of Determinantal Ideals

    Get PDF
    We consider determinantal ideals, where the generating minors are encoded in a hypergraph. We study when the generating minors form a Gr\"obner basis. In this case, the ideal is radical, and we can describe algebraic and numerical invariants of these ideals in terms of combinatorial data of their hypergraphs, such as the clique decomposition. In particular, we can construct a minimal free resolution as a tensor product of the minimal free resolution of their cliques. For several classes of hypergraphs we find a combinatorial description of the minimal primes in terms of a prime splitting. That is, we write the determinantal ideal as a sum of smaller determinantal ideals such that each minimal prime is a sum of minimal primes of the summands.Comment: Final version to appear in Communications in Algebr

    Grassmann Integral Representation for Spanning Hyperforests

    Full text link
    Given a hypergraph G, we introduce a Grassmann algebra over the vertex set, and show that a class of Grassmann integrals permits an expansion in terms of spanning hyperforests. Special cases provide the generating functions for rooted and unrooted spanning (hyper)forests and spanning (hyper)trees. All these results are generalizations of Kirchhoff's matrix-tree theorem. Furthermore, we show that the class of integrals describing unrooted spanning (hyper)forests is induced by a theory with an underlying OSP(1|2) supersymmetry.Comment: 50 pages, it uses some latex macros. Accepted for publication on J. Phys.
    corecore