47,015 research outputs found

    The Geometry of Interaction of Differential Interaction Nets

    Full text link
    The Geometry of Interaction purpose is to give a semantic of proofs or programs accounting for their dynamics. The initial presentation, translated as an algebraic weighting of paths in proofnets, led to a better characterization of the lambda-calculus optimal reduction. Recently Ehrhard and Regnier have introduced an extension of the Multiplicative Exponential fragment of Linear Logic (MELL) that is able to express non-deterministic behaviour of programs and a proofnet-like calculus: Differential Interaction Nets. This paper constructs a proper Geometry of Interaction (GoI) for this extension. We consider it both as an algebraic theory and as a concrete reversible computation. We draw links between this GoI and the one of MELL. As a by-product we give for the first time an equational theory suitable for the GoI of the Multiplicative Additive fragment of Linear Logic.Comment: 20 pagee, to be published in the proceedings of LICS0

    Acyclic Solos and Differential Interaction Nets

    Full text link
    We present a restriction of the solos calculus which is stable under reduction and expressive enough to contain an encoding of the pi-calculus. As a consequence, it is shown that equalizing names that are already equal is not required by the encoding of the pi-calculus. In particular, the induced solo diagrams bear an acyclicity property that induces a faithful encoding into differential interaction nets. This gives a (new) proof that differential interaction nets are expressive enough to contain an encoding of the pi-calculus. All this is worked out in the case of finitary (replication free) systems without sum, match nor mismatch

    Differential interaction nets

    Get PDF
    AbstractWe introduce interaction nets for a fragment of the differential lambda-calculus and exhibit in this framework a new symmetry between the of course and the why not modalities of linear logic, which is completely similar to the symmetry between the tensor and par connectives of linear logic. We use algebraic intuitions for introducing these nets and their reduction rules, and then we develop two correctness criteria (weak typability and acyclicity) and show that they guarantee strong normalization. Finally, we outline the correspondence between this interaction nets formalism and the resource lambda-calculus

    Interpreting a Finitary Pi-Calculus in Differential Interaction Nets

    No full text
    15 pagesInternational audienceWe propose and study a translation of a pi-calculus without sums nor replication/recursion into an untyped and essentially promotion-free version of differential interaction nets. We define a transition system of labeled processes and a transition system of labeled differential interaction nets. We prove that our translation from processes to nets is a bisimulation between these two transition systems. This shows that differential interaction nets are sufficiently expressive for representing concurrency and mobility, as formalized by the pi-calculus

    The Geometry of Concurrent Interaction: Handling Multiple Ports by Way of Multiple Tokens (Long Version)

    Get PDF
    We introduce a geometry of interaction model for Mazza's multiport interaction combinators, a graph-theoretic formalism which is able to faithfully capture concurrent computation as embodied by process algebras like the π\pi-calculus. The introduced model is based on token machines in which not one but multiple tokens are allowed to traverse the underlying net at the same time. We prove soundness and adequacy of the introduced model. The former is proved as a simulation result between the token machines one obtains along any reduction sequence. The latter is obtained by a fine analysis of convergence, both in nets and in token machines

    An Explicit Framework for Interaction Nets

    Full text link
    Interaction nets are a graphical formalism inspired by Linear Logic proof-nets often used for studying higher order rewriting e.g. \Beta-reduction. Traditional presentations of interaction nets are based on graph theory and rely on elementary properties of graph theory. We give here a more explicit presentation based on notions borrowed from Girard's Geometry of Interaction: interaction nets are presented as partial permutations and a composition of nets, the gluing, is derived from the execution formula. We then define contexts and reduction as the context closure of rules. We prove strong confluence of the reduction within our framework and show how interaction nets can be viewed as the quotient of some generalized proof-nets

    Analysis of signalling pathways using the prism model checker

    Get PDF
    We describe a new modelling and analysis approach for signal transduction networks in the presence of incomplete data. We illustrate the approach with an example, the RKIP inhibited ERK pathway [1]. Our models are based on high level descriptions of continuous time Markov chains: reactions are modelled as synchronous processes and concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis of queries such as if a concentration reaches a certain level, will it remain at that level thereafter? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable

    Computational Modeling for the Activation Cycle of G-proteins by G-protein-coupled Receptors

    Full text link
    In this paper, we survey five different computational modeling methods. For comparison, we use the activation cycle of G-proteins that regulate cellular signaling events downstream of G-protein-coupled receptors (GPCRs) as a driving example. Starting from an existing Ordinary Differential Equations (ODEs) model, we implement the G-protein cycle in the stochastic Pi-calculus using SPiM, as Petri-nets using Cell Illustrator, in the Kappa Language using Cellucidate, and in Bio-PEPA using the Bio-PEPA eclipse plug in. We also provide a high-level notation to abstract away from communication primitives that may be unfamiliar to the average biologist, and we show how to translate high-level programs into stochastic Pi-calculus processes and chemical reactions.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
    • …
    corecore