221 research outputs found

    Convergence Guarantees for Stochastic Subgradient Methods in Nonsmooth Nonconvex Optimization

    Full text link
    In this paper, we investigate the convergence properties of the stochastic gradient descent (SGD) method and its variants, especially in training neural networks built from nonsmooth activation functions. We develop a novel framework that assigns different timescales to stepsizes for updating the momentum terms and variables, respectively. Under mild conditions, we prove the global convergence of our proposed framework in both single-timescale and two-timescale cases. We show that our proposed framework encompasses a wide range of well-known SGD-type methods, including heavy-ball SGD, SignSGD, Lion, normalized SGD and clipped SGD. Furthermore, when the objective function adopts a finite-sum formulation, we prove the convergence properties for these SGD-type methods based on our proposed framework. In particular, we prove that these SGD-type methods find the Clarke stationary points of the objective function with randomly chosen stepsizes and initial points under mild assumptions. Preliminary numerical experiments demonstrate the high efficiency of our analyzed SGD-type methods.Comment: 30 pages, the introduction part is modified and some typos are correcte

    Nonsmooth nonconvex stochastic heavy ball

    Full text link
    Motivated by the conspicuous use of momentum based algorithms in deep learning, we study a nonsmooth nonconvex stochastic heavy ball method and show its convergence. Our approach relies on semialgebraic assumptions, commonly met in practical situations, which allow to combine a conservative calculus with nonsmooth ODE methods. In particular, we can justify the use of subgradient sampling in practical implementations that employ backpropagation or implicit differentiation. Additionally, we provide general conditions for the sample distribution to ensure the convergence of the objective function. As for the stochastic subgradient method, our analysis highlights that subgradient sampling can make the stochastic heavy ball method converge to artificial critical points. We address this concern showing that these artifacts are almost surely avoided when initializations are randomized

    Asynchronous Optimization Methods for Efficient Training of Deep Neural Networks with Guarantees

    Full text link
    Asynchronous distributed algorithms are a popular way to reduce synchronization costs in large-scale optimization, and in particular for neural network training. However, for nonsmooth and nonconvex objectives, few convergence guarantees exist beyond cases where closed-form proximal operator solutions are available. As most popular contemporary deep neural networks lead to nonsmooth and nonconvex objectives, there is now a pressing need for such convergence guarantees. In this paper, we analyze for the first time the convergence of stochastic asynchronous optimization for this general class of objectives. In particular, we focus on stochastic subgradient methods allowing for block variable partitioning, where the shared-memory-based model is asynchronously updated by concurrent processes. To this end, we first introduce a probabilistic model which captures key features of real asynchronous scheduling between concurrent processes; under this model, we establish convergence with probability one to an invariant set for stochastic subgradient methods with momentum. From the practical perspective, one issue with the family of methods we consider is that it is not efficiently supported by machine learning frameworks, as they mostly focus on distributed data-parallel strategies. To address this, we propose a new implementation strategy for shared-memory based training of deep neural networks, whereby concurrent parameter servers are utilized to train a partitioned but shared model in single- and multi-GPU settings. Based on this implementation, we achieve on average 1.2x speed-up in comparison to state-of-the-art training methods for popular image classification tasks without compromising accuracy

    Set-Valued Analysis, Viability Theory and Partial Differential Inclusions

    Get PDF
    Systems of first-order partial differential inclusions -- solutions of which are feedbacks governing viable trajectories of control systems -- are derived. A variational principle and an existence theorem of a (single-valued contingent) solution to such partial differential inclusions are stated. To prove such theorems, tools of set-valued analysis and tricks taken from viability theory are surveyed. This paper is the text of a plenary conference to the World Congress on Nonlinear Analysis held at Tampa, Florida, August 19-26, 1992
    • …
    corecore