2,359 research outputs found

    Phase-shift Fault Analysis of Grain v1

    Get PDF
    This paper deals with the phase-shift fault analysisof stream cipher Grain v1. We assume that the attacker is ableto desynchronize the linear and nonlinear registers of the cipherduring the keystream generation phase by either forcing one ofthe registers to clock one more time, while the other register is notclocked, or by preventing one of the registers from clocking, whilethe other register is clocked. Using this technique, we are able toobtain the full inner state of the cipher in reasonable time (under12 hours on a single PC) by using 150 bits of unfaulted keystream,600 bits of faulted keystreams and by correctly guessing 28 bitsof the linear register

    A Differential Fault Attack on Plantlet

    Get PDF
    Lightweight stream ciphers have received serious attention in the last few years. The present design paradigm considers very small state (less than twice the key size) and use of the secret key bits during pseudo-random stream generation. One such effort, Sprout, had been proposed two years back and it was broken almost immediately. After carefully studying these attacks, a modified version named Plantlet has been designed very recently. While the designers of Plantlet do not provide any analysis on fault attack, we note that Plantlet is even weaker than Sprout in terms of Differential Fault Attack (DFA). Our investigation, following the similar ideas as in the analysis against Sprout, shows that we require only around 4 faults to break Plantlet by DFA in a few hours time. While fault attack is indeed difficult to implement and our result does not provide any weakness of the cipher in normal mode, we believe that these initial results will be useful for further understanding of Plantlet

    Multi-Bit Differential Fault Analysis of Grain-128 with Very Weak Assumptions

    Get PDF
    Very few differential fault attacks (DFA) were reported on {\em Grain-128} so far. In this paper we present a generic attack strategy that allows the adversary to challenge the cipher under different multi-bit fault models with faults at a targeted keystream generation round even if bit arrangement of the actual cipher device is unknown. Also unique identification of fault locations is not necessary. To the best of our knowledge, this paper assumes the weakest adversarial power ever considered in the open literature for DFA on {\em Grain-128} and develops the most realistic attack strategy so far on {\em Grain-128}. In particular, when a random area within k{1,2,3,4,5}k \in \{1,2,3,4,5\} neighbourhood bits can only be disturbed by a single fault injection at the first keystream generation round (kk-neighbourhood bit fault), without knowing the locations or the exact number of bits the injected fault has altered, our attack strategy always breaks the cipher with 55 faults. In a weaker setup even if bit arrangement of the cipher device is unknown, bad-faults (at the first keystream generation round) are rejected with probabilities 0.9999930.999993, 0.9999790.999979, 0.9999630.999963, 0.9999460.999946 and 0.9999210.999921 assuming that the adversary will use only 1, 2, 3, 4 and 5 neighbourhood bit faults respectively for {\em key-IV} recovery

    Differential Fault Attack on Grain v1, ACORN v3 and Lizard

    Get PDF
    Differential Fault Attack (DFA) is presently a very well known technique to evaluate security of a stream cipher. This considers that the stream cipher can be weakened by injection of the fault. In this paper we study DFA on three ciphers, namely Grain v1, Lizard and ACORN v3. We show that Grain v1 (an eStream cipher) can be attacked with injection of only 5 faults instead of 10 that has been reported in 2012. For the first time, we have mounted the fault attack on Lizard, a very recent design and show that one requires only 5 faults to obtain the state. ACORN v3 is a third round candidate of CAESAR and there is only one hard fault attack on an earlier version of this cipher. However, the `hard fault\u27 model requires a lot more assumption than the generic DFA. In this paper, we mount a DFA on ACORN v3 that requires 9 faults to obtain the state. In case of Grain v1 and ACORN v3, we can obtain the secret key once the state is known. However, that is not immediate in case of Lizard. While we have used the basic framework of DFA that appears in literature quite frequently, specific tweaks have to be explored to mount the actual attacks that were not used earlier. To the best of our knowledge, these are the best known DFA on these three ciphers

    Fault Analysis of Grain Family of Stream Ciphers

    Get PDF
    In this paper, we present fault attack on Grain family of stream ciphers, an eStream finalist. The earlier fault attacks on Grain work on LFSR whereas our target for fault induction is the NFSR. Our attack requires a small number of faults to be injected; 150 only for Grain v1 and only 312 and 384 for Grain-128 and Grain-128a, respectively. The number of faults are much lesser than the earlier reported fault attacks; 1587 for Grain-128 and 1831 for Grain-128a

    Phase-shift Fault Analysis of Grain-128

    Get PDF
    Phase-shift fault attack is a type of fault attack used for cryptanalysis of stream ciphers. It involves clocking a cipher’s feedback shift registers out of phase, in order to generate faulted keystream. Grain-128 cipher is a 128-bit modification of the Grain cipher which is one of the finalists in the eSTREAM project. In this work, we propose a phase-shift fault attack against Grain-128 loaded with key-IV pairs that result in an all-zero LFSR after initialisation. We frame equations in terms of the input and output bits of the cipher and solve them using a SAT solver. By correctly guessing 40 innerstate bits, we are able to recover the entire 128-bit key with just 2 phase-shift faults for keystreams of length 200 bits

    Multilevel Runtime Verification for Safety and Security Critical Cyber Physical Systems from a Model Based Engineering Perspective

    Get PDF
    Advanced embedded system technology is one of the key driving forces behind the rapid growth of Cyber-Physical System (CPS) applications. CPS consists of multiple coordinating and cooperating components, which are often software-intensive and interact with each other to achieve unprecedented tasks. Such highly integrated CPSs have complex interaction failures, attack surfaces, and attack vectors that we have to protect and secure against. This dissertation advances the state-of-the-art by developing a multilevel runtime monitoring approach for safety and security critical CPSs where there are monitors at each level of processing and integration. Given that computation and data processing vulnerabilities may exist at multiple levels in an embedded CPS, it follows that solutions present at the levels where the faults or vulnerabilities originate are beneficial in timely detection of anomalies. Further, increasing functional and architectural complexity of critical CPSs have significant safety and security operational implications. These challenges are leading to a need for new methods where there is a continuum between design time assurance and runtime or operational assurance. Towards this end, this dissertation explores Model Based Engineering methods by which design assurance can be carried forward to the runtime domain, creating a shared responsibility for reducing the overall risk associated with the system at operation. Therefore, a synergistic combination of Verification & Validation at design time and runtime monitoring at multiple levels is beneficial in assuring safety and security of critical CPS. Furthermore, we realize our multilevel runtime monitor framework on hardware using a stream-based runtime verification language

    Linked Fault Analysis

    Get PDF
    Numerous fault models have been developed, each with distinct characteristics and effects. These models should be evaluated in light of their costs, repeatability, and practicability. Moreover, there must be effective ways to use the injected fault to retrieve the secret key, especially if there are some countermeasures in the implementation. In this paper, we introduce a new fault analysis technique called ``linked fault analysis\u27\u27 (LFA), which can be viewed as a more powerful version of well-known fault attacks against implementations of symmetric primitives in various circumstances, especially software implementations. For known fault analyses, the bias over the faulty value or the relationship between the correct value and the faulty one, both produced by the fault injection serve as the foundations for the fault model. In the LFA, however, a single fault involves two intermediate values. The faulty target variable, u2˘7u\u27, is linked to a second variable, vv, such that a particular relation holds: u2˘7=l(v)u\u27=l(v). We show that LFA lets the attacker perform fault attacks without the input control, with much fewer data than previously introduced fault attacks in the same class. Also, we show two approaches, called LDFA and LIFA, that show how LFA can be utilized in the presence or absence of typical redundant-based countermeasures. Finally, we demonstrate that LFA is still effective, but under specific circumstances, even when masking protections are in place. We performed our attacks against the public implementation of AES in ATMEGA328p to show how LFA works in the real world. The practical results and simulations validate our theoretical models as well

    Analysis and Design of Symmetric Cryptographic Algorithms

    Get PDF
    This doctoral thesis is dedicated to the analysis and the design of symmetric cryptographic algorithms. In the first part of the dissertation, we deal with fault-based attacks on cryptographic circuits which belong to the field of active implementation attacks and aim to retrieve secret keys stored on such chips. Our main focus lies on the cryptanalytic aspects of those attacks. In particular, we target block ciphers with a lightweight and (often) non-bijective key schedule where the derived subkeys are (almost) independent from each other. An attacker who is able to reconstruct one of the subkeys is thus not necessarily able to directly retrieve other subkeys or even the secret master key by simply reversing the key schedule. We introduce a framework based on differential fault analysis that allows to attack block ciphers with an arbitrary number of independent subkeys and which rely on a substitution-permutation network. These methods are then applied to the lightweight block ciphers LED and PRINCE and we show in both cases how to recover the secret master key requiring only a small number of fault injections. Moreover, we investigate approaches that utilize algebraic instead of differential techniques for the fault analysis and discuss advantages and drawbacks. At the end of the first part of the dissertation, we explore fault-based attacks on the block cipher Bel-T which also has a lightweight key schedule but is not based on a substitution-permutation network but instead on the so-called Lai-Massey scheme. The framework mentioned above is thus not usable against Bel-T. Nevertheless, we also present techniques for the case of Bel-T that enable full recovery of the secret key in a very efficient way using differential fault analysis. In the second part of the thesis, we focus on authenticated encryption schemes. While regular ciphers only protect privacy of processed data, authenticated encryption schemes also secure its authenticity and integrity. Many of these ciphers are additionally able to protect authenticity and integrity of so-called associated data. This type of data is transmitted unencrypted but nevertheless must be protected from being tampered with during transmission. Authenticated encryption is nowadays the standard technique to protect in-transit data. However, most of the currently deployed schemes have deficits and there are many leverage points for improvements. With NORX we introduce a novel authenticated encryption scheme supporting associated data. This algorithm was designed with high security, efficiency in both hardware and software, simplicity, and robustness against side-channel attacks in mind. Next to its specification, we present special features, security goals, implementation details, extensive performance measurements and discuss advantages over currently deployed standards. Finally, we describe our preliminary security analysis where we investigate differential and rotational properties of NORX. Noteworthy are in particular the newly developed techniques for differential cryptanalysis of NORX which exploit the power of SAT- and SMT-solvers and have the potential to be easily adaptable to other encryption schemes as well.Diese Doktorarbeit beschäftigt sich mit der Analyse und dem Entwurf von symmetrischen kryptographischen Algorithmen. Im ersten Teil der Dissertation befassen wir uns mit fehlerbasierten Angriffen auf kryptographische Schaltungen, welche dem Gebiet der aktiven Seitenkanalangriffe zugeordnet werden und auf die Rekonstruktion geheimer Schlüssel abzielen, die auf diesen Chips gespeichert sind. Unser Hauptaugenmerk liegt dabei auf den kryptoanalytischen Aspekten dieser Angriffe. Insbesondere beschäftigen wir uns dabei mit Blockchiffren, die leichtgewichtige und eine (oft) nicht-bijektive Schlüsselexpansion besitzen, bei denen die erzeugten Teilschlüssel voneinander (nahezu) unabhängig sind. Ein Angreifer, dem es gelingt einen Teilschlüssel zu rekonstruieren, ist dadurch nicht in der Lage direkt weitere Teilschlüssel oder sogar den Hauptschlüssel abzuleiten indem er einfach die Schlüsselexpansion umkehrt. Wir stellen Techniken basierend auf differenzieller Fehleranalyse vor, die es ermöglichen Blockchiffren zu analysieren, welche eine beliebige Anzahl unabhängiger Teilschlüssel einsetzen und auf Substitutions-Permutations Netzwerken basieren. Diese Methoden werden im Anschluss auf die leichtgewichtigen Blockchiffren LED und PRINCE angewandt und wir zeigen in beiden Fällen wie der komplette geheime Schlüssel mit einigen wenigen Fehlerinjektionen rekonstruiert werden kann. Darüber hinaus untersuchen wir Methoden, die algebraische statt differenzielle Techniken der Fehleranalyse einsetzen und diskutieren deren Vor- und Nachteile. Am Ende des ersten Teils der Dissertation befassen wir uns mit fehlerbasierten Angriffen auf die Blockchiffre Bel-T, welche ebenfalls eine leichtgewichtige Schlüsselexpansion besitzt jedoch nicht auf einem Substitutions-Permutations Netzwerk sondern auf dem sogenannten Lai-Massey Schema basiert. Die oben genannten Techniken können daher bei Bel-T nicht angewandt werden. Nichtsdestotrotz werden wir auch für den Fall von Bel-T Verfahren vorstellen, die in der Lage sind den vollständigen geheimen Schlüssel sehr effizient mit Hilfe von differenzieller Fehleranalyse zu rekonstruieren. Im zweiten Teil der Doktorarbeit beschäftigen wir uns mit authentifizierenden Verschlüsselungsverfahren. Während gewöhnliche Chiffren nur die Vertraulichkeit der verarbeiteten Daten sicherstellen, gewährleisten authentifizierende Verschlüsselungsverfahren auch deren Authentizität und Integrität. Viele dieser Chiffren sind darüber hinaus in der Lage auch die Authentizität und Integrität von sogenannten assoziierten Daten zu gewährleisten. Daten dieses Typs werden in nicht-verschlüsselter Form übertragen, müssen aber dennoch gegen unbefugte Veränderungen auf dem Transportweg geschützt sein. Authentifizierende Verschlüsselungsverfahren bilden heutzutage die Standardtechnologie um Daten während der Übertragung zu beschützen. Aktuell eingesetzte Verfahren weisen jedoch oftmals Defizite auf und es existieren vielfältige Ansatzpunkte für Verbesserungen. Mit NORX stellen wir ein neuartiges authentifizierendes Verschlüsselungsverfahren vor, welches assoziierte Daten unterstützt. Dieser Algorithmus wurde vor allem im Hinblick auf Einsatzgebiete mit hohen Sicherheitsanforderungen, Effizienz in Hardware und Software, Einfachheit, und Robustheit gegenüber Seitenkanalangriffen entwickelt. Neben der Spezifikation präsentieren wir besondere Eigenschaften, angestrebte Sicherheitsziele, Details zur Implementierung, umfassende Performanz-Messungen und diskutieren Vorteile gegenüber aktuellen Standards. Schließlich stellen wir Ergebnisse unserer vorläufigen Sicherheitsanalyse vor, bei der wir uns vor allem auf differenzielle Merkmale und Rotationseigenschaften von NORX konzentrieren. Erwähnenswert sind dabei vor allem die für die differenzielle Kryptoanalyse von NORX entwickelten Techniken, die auf die Effizienz von SAT- und SMT-Solvern zurückgreifen und das Potential besitzen relativ einfach auch auf andere Verschlüsselungsverfahren übertragen werden zu können

    Bitstream Modification of Trivium

    Get PDF
    In this paper we present a bitstream modification attack on the Trivium cipher, an international standard under ISO/IEC 29192-3. By changing the content of three LUTs in the bitstream, we reduce the non-linear state updating function of Trivium to a linear one. This makes it possible to recover the key from 288 keystream bits using at most 219.412^{19.41} operations. We also propose a countermeasure against bitstream modification attacks which obfuscates the bitstream using dummy and camouflaged LUTs which look legitimate to the attacker. We present an algorithm for injecting dummy LUTs directly into the bitstream without causing any performance or power penalty
    corecore