17 research outputs found

    Golden Fish: An Intelligent Stream Cipher Fuse Memory Modules

    Get PDF
    In this paper, we use a high-order iterated function generated by block cipher as the nonlinear filter to improve the security of stream cipher. Moreover, by combining the published rounds function in block cipher and OFB as the nonlinear functional mode with an extra memory module, we enable to control the nonlinear complexity of the design. This new approach fuses the block cipher operation mode with two memory modules in one stream cipher. The security of this design is proven by the both periodic and nonlinear evaluation. The periods of this structure is guaranteed by the traditional Linear Feedback Shift Register design and the security of nonlinear characteristic is demonstrated by block cipher algorithm design itself, which is remarkably safer than the previous designs of stream cipher. We also can find such design style at SHA3

    Cryptanalysis of Symmetric Cryptographic Primitives

    Get PDF
    Symmetric key cryptographic primitives are the essential building blocks in modern information security systems. The overall security of such systems is crucially dependent on these mathematical functions, which makes the analysis of symmetric key primitives a goal of critical importance. The security argument for the majority of such primitives in use is only a heuristic one and therefore their respective security evaluation continually remains an open question. In this thesis, we provide cryptanalytic results for several relevant cryptographic hash functions and stream ciphers. First, we provide results concerning two hash functions: HAS-160 and SM3. In particular, we develop a new heuristic for finding compatible differential paths and apply it to the the Korean hash function standard HAS-160. Our heuristic leads to a practical second order collision attack over all of the HAS-160 function steps, which is the first practical-complexity distinguisher on this function. An example of a colliding quartet is provided. In case of SM3, which is a design that builds upon the SHA-2 hash and is published by the Chinese Commercial Cryptography Administration Office for the use in the electronic authentication service system, we study second order collision attacks over reduced-round versions and point out a structural slide-rotational property that exists in the function. Next, we examine the security of the following three stream ciphers: Loiss, SNOW 3G and SNOW 2.0. Loiss stream cipher is designed by Dengguo Feng et al. aiming to be implemented in byte-oriented processors. By exploiting some differential properties of a particular component utilized in the cipher, we provide an attack of a practical complexity on Loiss in the related-key model. As confirmed by our experimental results, our attack recovers 92 bits of the 128-bit key in less than one hour on a PC with 3 GHz Intel Pentium 4 processor. SNOW 3G stream cipher is used in 3rd Generation Partnership Project (3GPP) and the SNOW 2.0 cipher is an ISO/IEC standard (IS 18033-4). For both of these two ciphers, we show that the initialization procedure admits a sliding property, resulting in several sets of related-key pairs. In addition to allowing related-key key recovery attacks against SNOW 2.0 with 256-bit keys, the presented properties reveal non-random behavior of the primitives, yield related-key distinguishers for the two ciphers and question the validity of the security proofs of protocols based on the assumption that these ciphers behave like perfect random functions of the key-IV. Finally, we provide differential fault analysis attacks against two stream ciphers, namely, HC-128 and Rabbit. In this type of attacks, the attacker is assumed to have physical influence over the device that performs the encryption and is able to introduce random faults into the computational process. In case of HC-128, the fault model in which we analyze the cipher is the one in which the attacker is able to fault a random word of the inner state of the cipher but cannot control its exact location nor its new faulted value. Our attack requires about 7968 faults and recovers the complete internal state of HC-128 by solving a set of 32 systems of linear equations over Z2 in 1024 variables. In case of Rabbit stream cipher, the fault model in which the cipher is analyzed is the one in which a random bit of the internal state of the cipher is faulted, however, without control over the location of the injected fault. Our attack requires around 128 − 256 faults, precomputed table of size 2^41.6 bytes and recovers the complete internal state of Rabbit in about 2^38 steps

    Design of Stream Ciphers and Cryptographic Properties of Nonlinear Functions

    Get PDF
    Block and stream ciphers are widely used to protect the privacy of digital information. A variety of attacks against block and stream ciphers exist; the most recent being the algebraic attacks. These attacks reduce the cipher to a simple algebraic system which can be solved by known algebraic techniques. These attacks have been very successful against a variety of stream ciphers and major efforts (for example eSTREAM project) are underway to design and analyze new stream ciphers. These attacks have also raised some concerns about the security of popular block ciphers. In this thesis, apart from designing new stream ciphers, we focus on analyzing popular nonlinear transformations (Boolean functions and S-boxes) used in block and stream ciphers for various cryptographic properties, in particular their resistance against algebraic attacks. The main contribution of this work is the design of two new stream ciphers and a thorough analysis of the algebraic immunity of Boolean functions and S-boxes based on power mappings. First we present WG, a family of new stream ciphers designed to obtain a keystream with guaranteed randomness properties. We show how to obtain a mathematical description of a WG stream cipher for the desired randomness properties and security level, and then how to translate this description into a practical hardware design. Next we describe the design of a new RC4-like stream cipher suitable for high speed software applications. The design is compared with original RC4 stream cipher for both security and speed. The second part of this thesis closely examines the algebraic immunity of Boolean functions and S-boxes based on power mappings. We derive meaningful upper bounds on the algebraic immunity of cryptographically significant Boolean power functions and show that for large input sizes these functions have very low algebraic immunity. To analyze the algebraic immunity of S-boxes based on power mappings, we focus on calculating the bi-affine and quadratic equations they satisfy. We present two very efficient algorithms for this purpose and give new S-box constructions that guarantee zero bi-affine and quadratic equations. We also examine these S-boxes for their resistance against linear and differential attacks and provide a list of S-boxes based on power mappings that offer high resistance against linear, differential, and algebraic attacks. Finally we investigate the algebraic structure of S-boxes used in AES and DES by deriving their equivalent algebraic descriptions

    A Salad of Block Ciphers

    Get PDF
    This book is a survey on the state of the art in block cipher design and analysis. It is work in progress, and it has been for the good part of the last three years -- sadly, for various reasons no significant change has been made during the last twelve months. However, it is also in a self-contained, useable, and relatively polished state, and for this reason I have decided to release this \textit{snapshot} onto the public as a service to the cryptographic community, both in order to obtain feedback, and also as a means to give something back to the community from which I have learned much. At some point I will produce a final version -- whatever being a ``final version\u27\u27 means in the constantly evolving field of block cipher design -- and I will publish it. In the meantime I hope the material contained here will be useful to other people

    Scan-based Side-channel Attacks against Cryptographic and Hash Function Integrated Circuits

    Get PDF
    早大学位記番号:新8549早稲田大

    Матеріали Ⅲ Всеукраїнської науково-технічної конференції „Теоретичні та прикладні аспекти радіотехніки і приладобудування“

    Get PDF
    Роботи друкуються в авторській редакції. Видавець не несе відповідальності за достовірність інформації, яка наведена в роботах, та залишає за собою право не погоджуватися з думками авторів на розглянуті питання.Збірник містить матеріали ІІІ Всеукраїнської науково-технічної конференції «Теоретичні та прикладні аспекти радіотехніки і приладобудування» з таких основних напрямків: математичні моделі та інформаційні технології; обчислювальні методи та засоби в радіотехніці і приладобудуванні; супутникові та наземні системи телекомунікацій; електроживлення радіоелектронної апаратури; біомедична інженерія; автоматизація та комп’ютерні технології; світлотехніка і електроенергетика

    Vie privée en commerce électronique

    Full text link
    Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal
    corecore