255 research outputs found

    An effective simulation analysis of transient electromagnetic multiple faults

    Get PDF
    Embedded encryption devices and smart sensors are vulnerable to physical attacks. Due to the continuous shrinking of chip size, laser injection, particle radiation and electromagnetic transient injection are possible methods that introduce transient multiple faults. In the fault analysis stage, the adversary is unclear about the actual number of faults injected. Typically, the single-nibble fault analysis encounters difficulties. Therefore, in this paper, we propose novel ciphertext-only impossible differentials that can analyze the number of random faults to six nibbles. We use the impossible differentials to exclude the secret key that definitely does not exist, and then gradually obtain the unique secret key through inverse difference equations. Using software simulation, we conducted 32,000 random multiple fault attacks on Midori. The experiments were carried out to verify the theoretical model of multiple fault attacks. We obtain the relationship between fault injection and information content. To reduce the number of fault attacks, we further optimized the fault attack method. The secret key can be obtained at least 11 times. The proposed ciphertext-only impossible differential analysis provides an effective method for random multiple faults analysis, which would be helpful for improving the security of block ciphers

    Efficient Error detection Architectures for Low-Energy Block Ciphers with the Case Study of Midori Benchmarked on FPGA

    Get PDF
    Achieving secure, high performance implementations for constrained applications such as implantable and wearable medical devices is a priority in efficient block ciphers. However, security of these algorithms is not guaranteed in presence of malicious and natural faults. Recently, a new lightweight block cipher, Midori, has been proposed which optimizes the energy consumption besides having low latency and hardware complexity. This algorithm is proposed in two energy-efficient varients, i.e., Midori64 and Midori128, with block sizes equal to 64 and 128 bits. In this thesis, fault diagnosis schemes for variants of Midori are proposed. To the best of the our knowledge, there has been no fault diagnosis scheme presented in the literature for Midori to date. The fault diagnosis schemes are provided for the nonlinear S-box layer and for the round structures with both 64-bit and 128-bit Midori symmetric key ciphers. The proposed schemes are benchmarked on field-programmable gate array (FPGA) and their error coverage is assessed with fault-injection simulations. These proposed error detection architectures make the implementations of this new low-energy lightweight block cipher more reliable

    CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection Against DFA Attacks

    Get PDF
    Traditionally, countermeasures against physical attacks are integrated into the implementation of cryptographic primitives after the algorithms have been designed for achieving a certain level of cryptanalytic security. This picture has been changed by the introduction of PICARO, ZORRO, and FIDES, where efficient protection against Side-Channel Analysis (SCA) attacks has been considered in their design. In this work we present the tweakable block cipher CRAFT: the efficient protection of its implementations against Differential Fault Analysis (DFA) attacks has been one of the main design criteria, while we provide strong bounds for its security in the related-tweak model. Considering the area footprint of round-based hardware implementations, CRAFT outperforms the other lightweight ciphers with the same state and key size. This holds not only for unprotected implementations but also when fault-detection facilities, side-channel protection, and their combination are integrated into the implementation. In addition to supporting a 64-bit tweak, CRAFT has the additional property that the circuit realizing the encryption can support the decryption functionality as well with very little area overhead

    CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection Against DFA Attacks

    Get PDF
    Traditionally, countermeasures against physical attacks are integrated into the implementation of cryptographic primitives after the algorithms have been designed for achieving a certain level of cryptanalytic security. This picture has been changed by the introduction of PICARO, ZORRO, and FIDES, where efficient protection against Side-Channel Analysis (SCA) attacks has been considered in their design. In this work we present the tweakable block cipher CRAFT: the efficient protection of its implementations against Differential Fault Analysis (DFA) attacks has been one of the main design criteria, while we provide strong bounds for its security in the related-tweak model. Considering the area footprint of round-based hardware implementations, CRAFT outperforms the other lightweight ciphers with the same state and key size. This holds not only for unprotected implementations but also when fault-detection facilities, side-channel protection, and their combination are integrated into the implementation. In addition to supporting a 64-bit tweak, CRAFT has the additional property that the circuit realizing the encryption can support the decryption functionality as well with very little area overhead

    Reliable Hardware Architectures for Cyrtographic Block Ciphers LED and HIGHT

    Get PDF
    Cryptographic architectures provide different security properties to sensitive usage models. However, unless reliability of architectures is guaranteed, such security properties can be undermined through natural or malicious faults. In this thesis, two underlying block ciphers which can be used in authenticated encryption algorithms are considered, i.e., LED and HIGHT block ciphers. The former is of the Advanced Encryption Standard (AES) type and has been considered areaefficient, while the latter constitutes a Feistel network structure and is suitable for low-complexity and low-power embedded security applications. In this thesis, we propose efficient error detection architectures including variants of recomputing with encoded operands and signature-based schemes to detect both transient and permanent faults. Authenticated encryption is applied in cryptography to provide confidentiality, integrity, and authenticity simultaneously to the message sent in a communication channel. In this thesis, we show that the proposed schemes are applicable to the case study of Simple Lightweight CFB (SILC) for providing authenticated encryption with associated data (AEAD). The error simulations are performed using Xilinx ISE tool and the results are benchmarked for the Xilinx FPGA family Virtex- 7 to assess the reliability capability and efficiency of the proposed architectures

    Cryptographic Fault Diagnosis using VerFI

    Get PDF
    Historically, fault diagnosis for integrated circuits has singularly dealt with reliability concerns. In contrast, a cryptographic circuit needs to be primarily evaluated concerning information leakage in the presence of maliciously crafted faults. While Differential Fault Attacks (DFAs) on symmetric ciphers have been known for over 20 years, recent developments have tried to structurally classify the attackers’ capabilities as well as the properties of countermeasures. Correct realization of countermeasures should still be manually verified, which is error-prone and infeasible for even moderate-size real-world designs. Here, we introduce the concept of Cryptographic Fault Diagnosis, which revises and shapes the notions of fault diagnosis in reliability testing to the needs of evaluating cryptographic implementations. Additionally, we present VerFI, which materializes the idea of Cryptographic Fault Diagnosis. It is a fully automated, open-source fault detection tool processing the gate-level representation of arbitrary cryptographic implementations. By adjusting the bounds of the underlying adversary model, VerFI allows us to rapidly examine the desired fault detection/correction capabilities of the given implementation. Among several case studies, we demonstrate its application on an implementation of LED cipher with combined countermeasures against side-channel analysis and fault-injection attacks (published at CRYPTO 2016). This experiment revealed general implementation flaws and undetectable faults leading to successful DFA on the protected design with full-key recovery

    FPGA-based Assessment of Midori and GIFT Lightweight Block Ciphers

    Get PDF
    Lightweight block ciphers are today of paramount importance to provide security services in constrained environments. Recent studies have questioned the security properties of PRESENT, which makes it evident the need to study alternative ciphers. In this work we provide hardware architectures for Midori and GIFT, and compare them against implementations for PRESENT and GIMLI under fair conditions. The hardware description for our designs is made publicly available
    • …
    corecore