174 research outputs found

    Differential Fault Analysis on A.E.S.

    Get PDF
    We explain how a differential fault analysis (DFA) works on AES 128, 192 or 256 bits

    First record of carbonates with spherulites and cone-in-cone structures from the Precambrian of Arctic Norway, and their palaeoenvironmental significance

    Get PDF
    Accepted manuscript version, licensed CC BY-NC-ND 4.0. We report for the first time carbonates from the upper Ediacaran sedimentary succession of Finnmark, Arctic Norway. Carbonates occur as calcareous siliciclastic beds, lenses, and concretions, some with calcite spherulites and cone-in-cone (CIC) calcite, in a mudrock to fine-grained sandstone succession from approximately 3β€―m to 26β€―m above the base of the 2nd cycle of the Manndrapselva Member of the StΓ‘hpogieddi Formation (Vestertana Group). They occur c. 40β€―m below the Ediacaran–Cambrian boundary, which is well defined by trace fossils. Thin-section petrography and scanning micro X-ray fluorescence elemental mapping reveal a layered composition of the calcareous sedimentary rocks. In some of those, well-developed nested cones of CIC calcite form the outer layer. Thin clay coatings outline individual cones. The inner layers are composed of (1) carbonate with calcite spherulites (grainstone) and (2) thinly laminated fine-grained calcareous siliciclastics (mudstone and wackestone) indicated by elevated concentrations of Al, Si, Fe, and Ti. The inner siliciclastic layers contain framboidal pyrite and probably organic matter. Formation of calcite spherulites took place probably at the sediment–water interface either in a coastal littoral environment or in situ in the sublittoral zone under high alkaline conditions whereas CIC calcite formed during burial diagenesis and clearly in pre-Caledonian time before metamorphism and cleavage formation. This new record of carbonates with calcite spherulites and CIC structures from the Ediacaran of Arctic Norway adds to their rare occurrences in the geological record

    A late Caledonian tectono-thermal event in the Gaissa Nappe Complex, Arctic Norway: evidence from fine-fraction Kβ€’Ar dating and illite crystallinity from the Digermulen Peninsula

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in GFF on 03 Oct 2019, available online: http://www.tandfonline.com/https://doi.org/10.1080/11035897.2019.1583685.Fine-fraction Kβ€’Ar dating and illite crystallinity determination were applied on a peculiar pale olive green shale sample from the upper Ediacaran Indreelva Member (StΓ‘hpogieddi Formation, Vestertana Group, Gaissa Nappe Complex) of the Digermulen Peninsula in Finnmark, Arctic Norway, to constrain the age and metamorphic conditions of tectono-thermal overprint. The <2 and <0.2 Β΅m grain-size fractions are almost purely illite and yielded an illite crystallinity (expressed as the KΓΌbler index) of 0.215 Δ° 2ΞΈ and 0.228 βˆ†Β° 2ΞΈ and Kβ€’Ar ages of 403.9 Β± 4.2 and 391.5 Β± 4.0 Ma, respectively. The Kβ€’Ar ages are interpreted to present late-stage thermal overprint under low epizonal conditions along a localised shear zone, likely post-dating the peak of metamorphism and cleavage generation on the Digermulen Peninsula. Thus, a later tectono-metamorphic event related to the late stage of the Scandian orogeny is locally recorded in the Gaissa Nappe Complex of the Caledonides of Finnmark. This late Scandian event was probably caused by orogenic extensional collapse and appears to have extended at least into Mid-Devonian time

    Integrated Evaluation Platform for Secured Devices

    Get PDF
    International audienceIn this paper, we describe the structure of a FPGAsmart card emulator. The aim of such an emulator is to improvethe behaviour of the whole architecture when faults occur. Withinthis card, an embedded Advanced Encryption Standard (AES)protected against DFA is inserted as well as a fault injectionblock. We also present the microprocessor core which controlsthe whole card

    Fault Detection in Crypto-Devices

    Get PDF

    Secure Autonomous UAVs Fleets by Using New Specific Embedded Secure Elements

    Get PDF
    International audienc

    Rare earth elements and neodymium and strontium isotopic constraints on provenance switch and post-depositional alteration of fossiliferous Ediacaran and lowermost Cambrian strata from Arctic Norway.

    Get PDF
    The Digermulen Peninsula in northeastern Finnmark, Arctic Norway, comprises one of the most complete Ediacaran–Cambrian transitions worldwide with a nearly continuous record of micro- and macrofossils from the interval of the diversification of complex life. Here, we report on the provenance and post-depositional alteration of argillaceous mudstones from the Digermulen Peninsula using rare earth elements and Sm–Nd and Rb–Sr isotopic systematics to provide an environmental context and better understand this important transition in Earth’s history. The studied sections comprise a mid-Ediacaran glacial–interglacial cycle, including the Nyborg Formation (ca. 590 Ma) and Mortensnes Formation (related to the ca. 580 Ma-old Gaskiers glaciation), and the Stahpogieddi Β΄ Formation (ca. 560–537 Ma), which yields Ediacara-type fossils in the Indreelva Member and contains the Ediacaran–Cambrian boundary interval in the Manndrapselva Member and basal part of the informal Lower Breidvika member (ca. 537–530 Ma). Three sample groups, (1) Nyborg and Mortensnes formations, (2) the lowermost five samples from the Indreelva Member and (3) the remaining samples from the Indreelva as well as from the Manndrapselva and Lower Breidvika members, can be distinguished, belonging to distinct depositional units. All samples have negative Ξ΅Nd(T) values (βˆ’ 6.00 to βˆ’ 21.04) indicating a dominant input of terrigenous detritus with an old continental crust affinity. Significant shifts in Sm–Nd isotope values are related to changes in the sediment source, i.e. Svecofennian province vs Karelian province vs Svecofennian province plus in addition likely some juvenile (late Neoproterozoic volcanic) material, and probably reflect palaeotectonic reorganisation along the Iapetus-facing margin of Baltica. The combined Rb–Sr isotopic data of all samples yield an errorchron age of about 430 Ma reflecting the resetting of the Rb–Sr whole-rock isotope systems of the mudstones during the Scandian tectono-metamorphic event in the Gaissa Nappe Complex of Finnmark. Preservation of palaeopascichnids coincides with the sedimentation regimes of sample groups 2 and 3 while other Ediacara-type fossils, e.g. Aspidella-type and frondose forms, are limited to the sample group 3. Our results are similar to those of earlier studies from the East European Platform in suggesting oxic seafloor conditions during the late Ediacaran

    Атака ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π° сбоСв Π½Π° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ имитовставок HMAC ΠΈ NMAC

    Get PDF
    One of the important problems arising in designing and practical implementation of cryptosystems is provide countermeasures against side-channel attacks. When implemented on a specific physical device, the algorithms, strength of which from the purely mathematical point of view is without great doubt, often employ weaknesses to such attacks.A fault analysis attack is one of the options of the side-channel attack on a cryptosystem. Its essence is that the attacker has an active influence on a physical device that provides computation (for example, a smart card). Faults caused by influence are then analysed in order to restore security information that is stored inside the device. These attacks are often significantly more efficient than passive side-channel attacks.The fault analysis attacks were proposed over 20 years ago. Since then, attacks have been successfully built owing to implementation of a number of symmetric and asymmetric crypto-algorithms. Also, a number of different methods for active influence on computation have been proposed, using specific physical effects and characteristics of the computing environment. Approaches to counteracting such types of attacks are also actively developing. For this, both physical and purely mathematical methods are used. However, it should be noted that cryptographic hash functions, and more complex crypto-schemes containing them as components (for example, some message authentication codes and digital signatures), are slightly presented in these papers.It is important to note that practical implementation of a specific attack requires that a combination of the following factors is available: a possibility of a specific physical impact on computation, an adequate mathematical model of such physical impact and a purely mathematical component of the attack that is a specific algorithms for introducing faults and further analysis of the results. At the same time, the solution of each of these problems separately is of independent theoretical value.The paper results do not involve the physical component of attack, aiming only at mathematics. In other words, a proposal is to present the specific algorithms for introducing faults and further analysis of the results. In this case, a specific fault model is considered known and specified. Several such models have been considered, based on the similar ones previously proposed for other algorithms.As an object of study, two standards to form message authentication codes have been selected: HMAC and NMAC. These standards can be based on any cryptographic hash function that provides the required level of security. The paper examines four examples of widely used hashes: MD5, MD4, SHA-1, SHA-0.The main results of the paper are as follows:- built specific algorithms for introducing faults in computation and their further analysis, allowing to discover secret information (secret keys);- finding and validation of estimates of such attacks (in terms of the number of introduced faults and the work factor of further analysis) for various combinations of parameters (algorithms and fault models);Β - shown that attacks timing can be reasonable.Одной ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈ практичСской Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ криптосистСм, являСтся противодСйствиС Π°Ρ‚Π°ΠΊΠ°ΠΌ ΠΏΠΎ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠ°Π½Π°Π»Π°ΠΌ. НСрСдко Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹, ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… с чисто матСматичСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния Π½Π΅ Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… сомнСний, ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ уязвимыми ΠΊ Ρ‚Π°ΠΊΠΈΠΌ Π°Ρ‚Π°ΠΊΠ°ΠΌ ΠΏΡ€ΠΈ ΠΈΡ… Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ физичСском устройствС.Атака ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π° сбоСв являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² Π°Ρ‚Π°ΠΊΠΈ Π½Π° криптосистСму ΠΏΠΎ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠ°Π½Π°Π»Π°ΠΌ. Π‘ΡƒΡ‚ΡŒ Π΅Π΅ состоит Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ воздСйствии Π°Ρ‚Π°ΠΊΡƒΡŽΡ‰ΠΈΠΌ Π½Π° физичСскоС устройство, ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‰Π΅Π΅ процСсс вычислСний (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, смарт-ΠΊΠ°Ρ€Ρ‚Ρƒ). ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Π΅ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ воздСйствия искаТСния Π·Π°Ρ‚Π΅ΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ с Ρ†Π΅Π»ΡŒΡŽ Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΡΠ΅ΠΊΡ€Π΅Ρ‚Π½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ, Ρ…Ρ€Π°Π½ΠΈΠΌΡƒΡŽ Π²Π½ΡƒΡ‚Ρ€ΠΈ устройства. ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π°Ρ‚Π°ΠΊΠΈ Π·Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ эффСктивнСС пассивных Π°Ρ‚Π°ΠΊ ΠΏΠΎ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹ΠΌ ΠΊΠ°Π½Π°Π»Π°ΠΌ.Атаки ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π° сбоСв Π±Ρ‹Π»ΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ Π² Π±ΠΎΠ»Π΅Π΅ 20 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄. Π‘ Ρ‚Π΅Ρ… ΠΏΠΎΡ€ Π±Ρ‹Π»ΠΈ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ построСны Π°Ρ‚Π°ΠΊΠΈ Π½Π° Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ†Π΅Π»ΠΎΠ³ΠΎ ряда симмСтричных ΠΈ асиммСтричных ΠΊΡ€ΠΈΠΏΡ‚ΠΎΠ°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ². Π’Π°ΠΊΠΆΠ΅ Π±Ρ‹Π» ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ряд Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² осущСствлСния Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ воздСйствия Π½Π° процСсс вычислСний, с использованиСм ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… физичСских эффСктов ΠΈ особСнностСй Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ срСды. Π’Π°ΠΊΠΆΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΈ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ Ρ‚Π°ΠΊΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Π°Ρ‚Π°ΠΊΠ°ΠΌ. Для этого ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΊΠ°ΠΊ физичСскиС, Ρ‚Π°ΠΊ ΠΈ чисто матСматичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Однако слСдуСт ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ криптографичСскиС Ρ…ΡΡˆ-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΈ Π±ΠΎΠ»Π΅Π΅ слоТныС криптосхСмы, содСрТащиС ΠΈΡ… Π² качСствС ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ имитовставки ΠΈ Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Π΅ подписи), Π² Ρ€Π°ΠΌΠΊΠ°Ρ… этих Ρ€Π°Π±ΠΎΡ‚ прСдставлСны Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ.Π’Π°ΠΆΠ½ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ для практичСского примСнСния ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Π°Ρ‚Π°ΠΊΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ сочСтаниС ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ²: наличия возмоТности ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ физичСского воздСйствия Π½Π° Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ процСсс, Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎΠΉ матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ физичСского воздСйствия ΠΈ чисто матСматичСского ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° Π°Ρ‚Π°ΠΊΠΈ --ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° внСсСния искаТСний ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². ΠŸΡ€ΠΈ этом Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· этих Π·Π°Π΄Π°Ρ‡ ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прСдставляСт ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π΅ Π·Π°Ρ‚Ρ€Π°Π³ΠΈΠ²Π°ΡŽΡ‚ Ρ„ΠΈΠ·ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΡƒΡŽ Π°Ρ‚Π°ΠΊΠΈ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡΡΡŒ лишь ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠΉ. Π˜Π½Ρ‹ΠΌΠΈ словами, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ внСсСния искаТСний ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². ΠŸΡ€ΠΈ этом конкрСтная модСль сбоСв считаСтся извСстной ΠΈ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ. РассмотрСно нСсколько Ρ‚Π°ΠΊΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Π°Π·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π° Π°Π½Π°Π»ΠΎΠ³Π°Ρ…, Ρ€Π°Π½Π΅Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… для Π΄Ρ€ΡƒΠ³ΠΈΡ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ².Π’ качСствС ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° исслСдований Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ Π΄Π²Π° стандарта формирования имитовставок: HMAC ΠΈ NMAC. Π£ΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ стандарты ΠΌΠΎΠ³ΡƒΡ‚ Π±Π°Π·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ Π½Π° любой криптографичСской Ρ…ΡΡˆ-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ Π½ΡƒΠΆΠ½Ρ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ стойкости. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ исслСдованы Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΡˆΠΈΡ€ΠΎΠΊΠΎΡ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½Π΅Π½Π½Ρ‹Ρ… Ρ…ΡΡˆΠ΅ΠΉ: MD5, MD4, SHA-1, SHA-0.ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅:-Β Β Β Β  построСны ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Π΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ внСсСния искаТСний Π² Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ процСсс, ΠΈ ΠΈΡ… дальнСйшСго Π°Π½Π°Π»ΠΈΠ·Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΈΠ·Π²Π»Π΅Ρ‡ΡŒ ΡΠ΅ΠΊΡ€Π΅Ρ‚Π½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ (сСкрСтныС ΠΊΠ»ΡŽΡ‡ΠΈ);-Β Β Β Β  Π½Π°ΠΉΠ΄Π΅Π½Ρ‹ ΠΈ обоснованы ΠΎΡ†Π΅Π½ΠΊΠΈ слоТности Ρ‚Π°ΠΊΠΈΡ… Π°Ρ‚Π°ΠΊ (Π² Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Ρ… числа вносимых сбоСв ΠΈ трудоСмкости ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡˆΠ΅Π³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°) для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сочСтаний ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²(Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΈ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ сбоСв);-Β Β Β Β  ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π°Ρ‚Π°ΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ Π·Π° Ρ€Π°Π·ΡƒΠΌΠ½ΠΎΠ΅ врСмя
    • …
    corecore