9,397 research outputs found

    Visual Quality Enhancement in Optoacoustic Tomography using Active Contour Segmentation Priors

    Full text link
    Segmentation of biomedical images is essential for studying and characterizing anatomical structures, detection and evaluation of pathological tissues. Segmentation has been further shown to enhance the reconstruction performance in many tomographic imaging modalities by accounting for heterogeneities of the excitation field and tissue properties in the imaged region. This is particularly relevant in optoacoustic tomography, where discontinuities in the optical and acoustic tissue properties, if not properly accounted for, may result in deterioration of the imaging performance. Efficient segmentation of optoacoustic images is often hampered by the relatively low intrinsic contrast of large anatomical structures, which is further impaired by the limited angular coverage of some commonly employed tomographic imaging configurations. Herein, we analyze the performance of active contour models for boundary segmentation in cross-sectional optoacoustic tomography. The segmented mask is employed to construct a two compartment model for the acoustic and optical parameters of the imaged tissues, which is subsequently used to improve accuracy of the image reconstruction routines. The performance of the suggested segmentation and modeling approach are showcased in tissue-mimicking phantoms and small animal imaging experiments.Comment: Accepted for publication in IEEE Transactions on Medical Imagin

    An efficient hybrid approach for medical images enhancement

    Get PDF
    Medical images have various critical usages in the field of medical science and healthcare engineering. These images contain information about many severe diseases. Health professionals identify various diseases by observing the medical images. Quality of medical images directly affects the accuracy of detection and diagnosis of various diseases. Therefore, quality of images must be as good as possible. Different approaches are existing today for enhancement of medical images, but quality of images is not good. In this literature, we have proposed a novel approach that uses principal component analysis (PCA), multi-scale switching morphological operator (MSMO) and contrast limited adaptive histogram equalization (CLAHE) methods in a unique sequence for this purpose. We have conducted exhaustive experiments on large number of images of various modalities such as MRI, ultrasound, and retina. Obtained results demonstrate that quality of medical images processed by proposed approach has significantly improved and better than other existing methods of this field

    A Brief Review of Cuckoo Search Algorithm (CSA) Research Progression from 2010 to 2013

    Get PDF
    Cuckoo Search Algorithm is a new swarm intelligence algorithm which based on breeding behavior of the Cuckoo bird. This paper gives a brief insight of the advancement of the Cuckoo Search Algorithm from 2010 to 2013. The first half of this paper presents the publication trend of Cuckoo Search Algorithm. The remaining of this paper briefly explains the contribution of the individual publication related to Cuckoo Search Algorithm. It is believed that this paper will greatly benefit the reader who needs a bird-eyes view of the Cuckoo Search Algorithm’s publications trend

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    The Combination of Mammography and MRI for Diagnosing Breast Cancer Using Fuzzy NN and SVM

    Get PDF
    Breast cancer is one of the common cancers among women so that early diagnosing of it can effectively help its treatment in this study, considering combination of Mammography and MRI pictures, we will try to recognize glands in existing pictures which identify all around of gland complete and precisely and separate it completely. In this method using artificial intelligence algorithm such as Affine transformation, Gabor filter, neural network, and support vector machine, image analysis will be carried out. The accuracy of proposed method is 98.14. In this work a special framework is presented which simplifies cancer diagnosis. The algorithm of proposed method is tested on z16 images. High speed and lack of human error are the most important factors in proposed intelligent system

    Nanomaterial-Based Electrochemical and Colorimetric Sensors for On-Site Detection of Small-Molecule Targets

    Get PDF
    An ideal biosensor is a compact and in-expensive device that is able to readily and rapidly detects different types of analytes with high sensitivity and specificity. The affectability of a biosensing methodology is subject to the limit of nanomaterials to transduce the target binding process to an improved perceptible signal, while the selectivity is accomplished by considering the binding and specificity of certain moieties to their targets. Keeping these requirements in mind we have chosen nanomaterials such as carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) that has catalytic properties combined with their size, shape and configuration dependent chemical and physical properties as essential precursors and signaling components for creation of biosensors with tremendous sensitivity. The primary goal of the research work described in this dissertation is to develop and evaluate novel methods to detect various analytes using nanomaterials, at the same time making an affordable architecture for point-of-care (POC) applications. We report here in chapter 3 a simple and new strategy for preparing disposable, paper-based, porous AuNP/M-SWCNT hybrid thin gold films with high conductivity, rapid electron transfer rates, and excellent electrocatalytic properties to achieve multiple analyte electrochemical detection with a resolution that greatly exceeds that of purchased flat gold slides. We further explored the use of nanomaterial-based paper films in more complex matrices to detect analytes such as NADH, which can act as a biomarker for certain cellular redox imbalances and disease conditions. Carbon nanotubes with their large activated surfaces and edge-plane sites (defects) that are ideal for performing NADH oxidation at low potentials without any help of redox mediators minimizing surface fouling in complex matrices is described in chapter 4. With an instrument-free approach in mind we further focused on a colorimetric platform using split cocaine aptamers and gold nanoparticles (AuNPs) to detect cocaine for on-site applications as described in chapter 5. In chapter 5, the split aptamer sequences were evaluated mainly on three basic criteria, the hybridization efficiency, specificity towards the analyte (cocaine), and the reaction time to observe a distinguishable color change from red to blue. The assay is an enzyme-assisted target recycling (EATR) strategy following the principle that nuclease enzyme recognizes probe–target complexes, cleaving only the probe strand releasing the target for recycling. We have also studied the effect of the number of binding domains with variable chain lengths on either side of the apurinic (AP) site. On the basis of our results, we finally shortlisted the sequence combination with maximum signal enhancement fold which is instrumental in development of colorimetric platform with faster, and specific reaction to observe a distinctive color change in the presence of cocaine

    An Integrated Method for Optimizing Bridge Maintenance Plans

    Get PDF
    Bridges are one of the vital civil infrastructure assets, essential for economic developments and public welfare. Their large numbers, deteriorating condition, public demands for safe and efficient transportation networks and limited maintenance and intervention budgets pose a challenge, particularly when coupled with the need to respect environmental constraints. This state of affairs creates a wide gap between critical needs for intervention actions, and tight maintenance and rehabilitation funds. In an effort to meet this challenge, a newly developed integrated method for optimized maintenance and intervention plans for reinforced concrete bridge decks is introduced. The method encompasses development of five models: surface defects evaluation, corrosion severities evaluation, deterioration modeling, integrated condition assessment, and optimized maintenance plans. These models were automated in a set of standalone computer applications, coded using C#.net in Matlab environment. These computer applications were subsequently combined to form an integrated method for optimized maintenance and intervention plans. Four bridges and a dataset of bridge images were used in testing and validating the developed optimization method and its five models. The developed models have unique features and demonstrated noticeable performance and accuracy over methods used in practice and those reported in the literature. For example, the accuracy of the surface defects detection and evaluation model outperforms those of widely-recognized machine leaning and deep learning models; reducing detection, recognition and evaluation of surface defects error by 56.08%, 20.2% and 64.23%, respectively. The corrosion evaluation model comprises design of a standardized amplitude rating system that circumvents limitations of numerical amplitude-based corrosion maps. In the integrated condition, it was inferred that the developed model accomplished consistent improvement over the visual inspection procedures in-use by the Ministry of Transportation in Quebec. Similarly, the deterioration model displayed average enhancement in the prediction accuracies by 60% when compared against the most commonly-utilized weibull distribution. The performance of the developed multi-objective optimization model yielded 49% and 25% improvement over that of genetic algorithm in a five-year study period and a twenty five-year study period, respectively. At the level of thirty five-year study period, unlike the developed model, classical meta-heuristics failed to find feasible solutions within the assigned constraints. The developed integrated platform is expected to provide an efficient tool that enables decision makers to formulate sustainable maintenance plans that optimize budget allocations and ensure efficient utilization of resources

    Multi-image-feature-based hierarchical concrete crack identification framework using optimized SVM multi-classifiers and D-S fusion algorithm for bridge structures

    Get PDF
    Cracks in concrete can cause the degradation of stiffness, bearing capacity and durability of civil infrastructure. Hence, crack diagnosis is of great importance in concrete research. On the basis of multiple image features, this work presents a novel approach for crack identification of concrete structures. Firstly, the non-local means method is adopted to process the original image, which can effectively diminish the noise influence. Then, to extract the effective features sensitive to the crack, different filters are employed for crack edge detection, which are subsequently tackled by integral projection and principal component analysis (PCA) for optimal feature selection. Moreover, support vector machine (SVM) is used to design the classifiers for initial diagnosis of concrete surface based on extracted features. To raise the classification accuracy, enhanced salp swarm algorithm (ESSA) is applied to the SVM for meta-parameter optimization. The Dempster–Shafer (D–S) fusion algorithm is utilized to fuse the diagnostic results corresponding to different filters for decision making. Finally, to demonstrate the effectiveness of the proposed framework, a total of 1200 images are collected from a real concrete bridge including intact (without crack), longitudinal crack, transverse crack and oblique crack cases. The results validate the performance of proposed method with promising results of diagnosis accuracy as high as 96.25%
    • …
    corecore