1,718 research outputs found

    Differential evolution with an evolution path: a DEEP evolutionary algorithm

    Get PDF
    Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs

    A multi-cycled sequential memetic computing approach for constrained optimisation

    Get PDF
    In this paper, we propose a multi-cycled sequential memetic computing structure for constrained optimisation. The structure is composed of multiple evolutionary cycles. At each cycle, an evolutionary algorithm is considered as an operator, and connects with a local optimiser. This structure enables the learning of useful knowledge from previous cycles and the transfer of the knowledge to facilitate search in latter cycles. Specifically, we propose to apply an estimation of distribution algorithm (EDA) to explore the search space until convergence at each cycle. A local optimiser, called DONLP2, is then applied to improve the best solution found by the EDA. New cycle starts after the local improvement if the computation budget has not been exceeded. In the developed EDA, an adaptive fully-factorized multivariate probability model is proposed. A learning mechanism, implemented as the guided mutation operator, is adopted to learn useful knowledge from previous cycles. The developed algorithm was experimentally studied on the benchmark problems in the CEC 2006 and 2010 competition. Experimental studies have shown that the developed probability model exhibits excellent exploration capability and the learning mechanism can significantly improve the search efficiency under certain conditions. The comparison against some well-known algorithms showed the superiority of the developed algorithm in terms of the consumed fitness evaluations and the solution quality

    Integrating continuous differential evolution with discrete local search for meander line RFID antenna design

    Get PDF
    The automated design of meander line RFID antennas is a discrete self-avoiding walk(SAW) problem for which efficiency is to be maximized while resonant frequency is to beminimized. This work presents a novel exploration of how discrete local search may beincorporated into a continuous solver such as differential evolution (DE). A prior DE algorithmfor this problem that incorporates an adaptive solution encoding and a bias favoringantennas with low resonant frequency is extended by the addition of the backbite localsearch operator and a variety of schemes for reintroducing modified designs into the DEpopulation. The algorithm is extremely competitive with an existing ACO approach and thetechnique is transferable to other SAW problems and other continuous solvers. The findingsindicate that careful reintegration of discrete local search results into the continuous populationis necessary for effective performance

    Modular Differential Evolution

    Full text link
    New contributions in the field of iterative optimisation heuristics are often made in an iterative manner. Novel algorithmic ideas are not proposed in isolation, but usually as an extension of a preexisting algorithm. Although these contributions are often compared to the base algorithm, it is challenging to make fair comparisons between larger sets of algorithm variants. This happens because even small changes in the experimental setup, parameter settings, or implementation details can cause results to become incomparable. Modular algorithms offer a way to overcome these challenges. By implementing the algorithmic modifications into a common framework, many algorithm variants can be compared, while ensuring that implementation details match in all versions. In this work, we propose a version of a modular framework for the popular Differential Evolution (DE) algorithm. We show that this modular approach not only aids in comparison, but also allows for a much more detailed exploration of the space of possible DE variants. This is illustrated by showing that tuning the settings of modular DE vastly outperforms a set of commonly used DE versions which have been recreated in our framework. We then investigate these tuned algorithms in detail, highlighting the relation between modules and performance on particular problems

    Fast micro-differential evolution for topological active net optimization

    Get PDF
    This paper studies the optimization problem of topological active net (TAN), which is often seen in image segmentation and shape modeling. A TAN is a topological structure containing many nodes, whose positions must be optimized while a predefined topology needs to be maintained. TAN optimization is often time-consuming and even constructing a single solution is hard to do. Such a problem is usually approached by a ``best improvement local search'' (BILS) algorithm based on deterministic search (DS), which is inefficient because it spends too much efforts in nonpromising probing. In this paper, we propose the use of micro-differential evolution (DE) to replace DS in BILS for improved directional guidance. The resultant algorithm is termed deBILS. Its micro-population efficiently utilizes historical information for potentially promising search directions and hence improves efficiency in probing. Results show that deBILS can probe promising neighborhoods for each node of a TAN. Experimental tests verify that deBILS offers substantially higher search speed and solution quality not only than ordinary BILS, but also the genetic algorithm and scatter search algorithm

    Linear Evolutionary Algorithm

    Get PDF

    Differential evolution with two-level parameter adaptation

    Get PDF
    The performance of differential evolution (DE) largely depends on its mutation strategy and control parameters. In this paper, we propose an adaptive DE (ADE) algorithm with a new mutation strategy DE/lbest/1 and a two-level adaptive parameter control scheme. The DE/lbest/1 strategy is a variant of the greedy DE/best/1 strategy. However, the population is mutated under the guide of multiple locally best individuals in DE/lbest/1 instead of one globally best individual in DE/best/1. This strategy is beneficial to the balance between fast convergence and population diversity. The two-level adaptive parameter control scheme is implemented mainly in two steps. In the first step, the population-level parameters F p and CR p for the whole population are adaptively controlled according to the optimization states, namely, the exploration state and the exploitation state in each generation. These optimization states are estimated by measuring the population distribution. Then, the individual-level parameters F i and CR i for each individual are generated by adjusting the population-level parameters. The adjustment is based on considering the individual's fitness value and its distance from the globally best individual. This way, the parameters can be adapted to not only the overall state of the population but also the characteristics of different individuals. The performance of the proposed ADE is evaluated on a suite of benchmark functions. Experimental results show that ADE generally outperforms four state-of-the-art DE variants on different kinds of optimization problems. The effects of ADE components, parameter properties of ADE, search behavior of ADE, and parameter sensitivity of ADE are also studied. Finally, we investigate the capability of ADE for solving three real-world optimization problems
    • …
    corecore