29,538 research outputs found

    High-dimensional Black-box Optimization via Divide and Approximate Conquer

    Get PDF
    Divide and Conquer (DC) is conceptually well suited to high-dimensional optimization by decomposing a problem into multiple small-scale sub-problems. However, appealing performance can be seldom observed when the sub-problems are interdependent. This paper suggests that the major difficulty of tackling interdependent sub-problems lies in the precise evaluation of a partial solution (to a sub-problem), which can be overwhelmingly costly and thus makes sub-problems non-trivial to conquer. Thus, we propose an approximation approach, named Divide and Approximate Conquer (DAC), which reduces the cost of partial solution evaluation from exponential time to polynomial time. Meanwhile, the convergence to the global optimum (of the original problem) is still guaranteed. The effectiveness of DAC is demonstrated empirically on two sets of non-separable high-dimensional problems.Comment: 7 pages, 2 figures, conferenc

    Algorithms Applied to Global Optimisation – Visual Evaluation

    Get PDF
    Evaluation and assessment of various search and optimisation algorithms is subject of large research efforts. Particular interest of this study is global optimisation and presented approach is based on observation and visual evaluation of Real-Coded Genetic Algorithm, Particle Swarm Optimisation, Differential Evolution and Free Search, which are briefly described and used for experiments. 3D graphical views, generated by visualisation tool VOTASA, illustrate essential aspects of global search process such as divergence, convergence, dependence on initialisation and utilisation of accidental events. Discussion on potential benefits of visual analysis, supported with numerical results, which could be used for comparative assessment of other methods and directions for further research conclude presented study

    State Transition Algorithm

    Full text link
    In terms of the concepts of state and state transition, a new heuristic random search algorithm named state transition algorithm is proposed. For continuous function optimization problems, four special transformation operators called rotation, translation, expansion and axesion are designed. Adjusting measures of the transformations are mainly studied to keep the balance of exploration and exploitation. Convergence analysis is also discussed about the algorithm based on random search theory. In the meanwhile, to strengthen the search ability in high dimensional space, communication strategy is introduced into the basic algorithm and intermittent exchange is presented to prevent premature convergence. Finally, experiments are carried out for the algorithms. With 10 common benchmark unconstrained continuous functions used to test the performance, the results show that state transition algorithms are promising algorithms due to their good global search capability and convergence property when compared with some popular algorithms.Comment: 18 pages, 28 figure

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima

    Adaptive intelligence applied to numerical optimisation

    Get PDF
    The article presents modification strategies theoretical comparison and experimental results achieved by adaptive heuristics applied to numerical optimisation of several non-constraint test functions. The aims of the study are to identify and compare how adaptive search heuristics behave within heterogeneous search space without retuning of the search parameters. The achieved results are summarised and analysed, which could be used for comparison to other methods and further investigation
    • …
    corecore