1,245 research outputs found

    Coded Slotted ALOHA: A Graph-Based Method for Uncoordinated Multiple Access

    Full text link
    In this paper, a random access scheme is introduced which relies on the combination of packet erasure correcting codes and successive interference cancellation (SIC). The scheme is named coded slotted ALOHA. A bipartite graph representation of the SIC process, resembling iterative decoding of generalized low-density parity-check codes over the erasure channel, is exploited to optimize the selection probabilities of the component erasure correcting codes via density evolution analysis. The capacity (in packets per slot) of the scheme is then analyzed in the context of the collision channel without feedback. Moreover, a capacity bound is developed and component code distributions tightly approaching the bound are derived.Comment: The final version to appear in IEEE Trans. Inf. Theory. 18 pages, 10 figure

    Interference Networks with Point-to-Point Codes

    Full text link
    The paper establishes the capacity region of the Gaussian interference channel with many transmitter-receiver pairs constrained to use point-to-point codes. The capacity region is shown to be strictly larger in general than the achievable rate regions when treating interference as noise, using successive interference cancellation decoding, and using joint decoding. The gains in coverage and achievable rate using the optimal decoder are analyzed in terms of ensemble averages using stochastic geometry. In a spatial network where the nodes are distributed according to a Poisson point process and the channel path loss exponent is β>2\beta > 2, it is shown that the density of users that can be supported by treating interference as noise can scale no faster than B2/βB^{2/\beta} as the bandwidth BB grows, while the density of users can scale linearly with BB under optimal decoding
    • …
    corecore