127 research outputs found

    An encryption package for UNIX

    Get PDF
    Cryptography has a much wider application than secrecy, such as authentication and digital signature. There are two common types of cryptographic algoritlims - symmetric and asymmetric. The Data Encryption Standaid (DES) is the first and only, publicly available cryptographic algoritlim tliat has been widely used in commercial conmiunication. The DES is a block cipher symmetric algoritlim and its design is based on the Shannon\u27s two general principles - diffusion and confusion. With the decreased cost of hardware and a better understanding of block ciphers and cryptanalysis techniques, a number of DES-like ciphers have been proposed as the replacement for DES. One-way hashing functions are useful in implementing any digital signature schemes. A hashing function accepts a vai\u27iable size message M as input and outputs a fixed size representation of tlie message H(M). A number of hashing functions of fixed size or variable size message digest have been proposed. The cryptographic primitives (des, feal, loki, kliufu, and kliafre), block cipher based hashing algorithms (sbh and dbh), and key-less hashing algorithms (md4, md4x, md5 and haval) have been implemented as standard commands and C library calls for the UNIX Operating System

    Linear cryptanalysis of pseudorandom functions

    Get PDF
    Relatório de projeto de pesquisa.In this paper, we study linear relations propagating across block ciphers from the key input to the ciphertext (for a fixed plaintext block). This is a usual setting of a one-way function, used for instance in modes of operation such as KFB (key feedback). We instantiate the block cipher with the full 16-round DES and s2s^2-DES, 10-round LOKI91 and 24-round Khufu, for which linear relations with high bias are well known. Other interesting targets include the full 8.5-round IDEA and PES ciphers for which high bias linear relations exist under the assumption of weak keys. Consequences of these findings impact the security of modes of operation such as KFB and of pseudorandom number/bit generators. These analyses were possible due to the linear structure and the poor diffusion of the key schedule algorithms. These findings shall motivate carefull (re)design of current and future key schedule algorithms

    The design of a secure data communication system

    Get PDF
    The recent results of using a new type of chosen-plaintext attack, which is called differential cryptanalysis, makes most published conventional secret-key block cipher systems vulnerable. The need for a new conventional cipher which resists all known attacks was the main inspiration of this work. The design of a secret-key block cipher algorithm called DCU-Cipher, that resists all known cryptanalysis methods is proposed in this dissertation. The proposed method is workable for either 64-bit plaintext/64-bit ciphertext blocks, or 128-bit plaintext/128-bit ciphertext blocks. The secret key in both styles is 128-bit long. This method has only four rounds and the main transformation function in this cipher algorithm is based on four mixed operations. The proposed method is suitable for both hardware and software implementation. It is also suitable for cryptographic hash function implementations. Two techniques for file and/or data communication encryption are also proposed here. These modes are modified versions of the Cipher-Block Chaining mode, by which the threat of the known-plaintext differential cyptanalytical attack is averted. An intensive investigation of the best known Identity-based key exchange schemes is also presented. The idea behind using such protocols, is providing an authenticated secret-key by using the users identification tockens. These kind of protocols appeared recently and are not standardized as yet. None of these protocols have been compared with previous proposals. Therefore one can not realize the efficiency and the advantages of a new proposed protocol without comparing it with other existing schemes of the same type. The aim of this investigation is to clarify the advantages and the disadvantages of each of the best known schemes and compare these schemes from the complixity and the speed viewpoint

    Block Ciphers: Analysis, Design and Applications

    Get PDF
    In this thesis we study cryptanalysis, applications and design of secret key block ciphers. In particular, the important class of Feistel ciphers is studied, which has a number of rounds, where in each round one applies a cryptographically weak function

    Differential Cryptanalysis of Feistel’s Iterated Block Ciphers

    Get PDF
    В статті обговорюються базові принципи Диференційного криптоаналіза, концепції, алгоритми, ідеї і методи, які забезпечують цей тип атаки, а також математичне обгрунтування.Here are described the basic principles of Differential Cryptanalysis, concepts, algorithms, ideas and methods which provide this kind of attack and also its mathematical background

    Cipher Text to Be Transmitted and Cryptanalysis in Network Security

    Get PDF
    Abstract-In this paper, we propose an encryption algorithm to encrypt plaintext to cipher text. We divide plaintext into numeric and non-numeric fields, also, we pack the numeric fields to produce packed numeric table and combine it with symbol fields to produce the new plaintext. We apply the basic computing operations, e.g., inserting dummy symbols, rotating, transposition, shifting and complement, in the proposed algorithm to encrypt plaintext to cipher text. The produced the cipher text which contains the plaintext, relative data and tables of encryption is transmitted to the receiver through the network. We also propose the cryptanalysis about these algorithms. It can be shown that the proposed algorithm is more secure in network security

    Decorrelation: A Theory for Block Cipher Security

    Get PDF
    Pseudorandomness is a classical model for the security of block ciphers. In this paper we propose convenient tools in order to study it in connection with the Shannon Theory, the Carter-Wegman universal hash functions paradigm, and the Luby-Rackoff approach. This enables the construction of new ciphers with security proofs under specific models. We show how to ensure security against basic differential and linear cryptanalysis and even more general attacks. We propose practical construction scheme
    corecore