25,978 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Unmanned Aerial Vehicle (UAV) for monitoring soil erosion in Morocco

    Get PDF
    This article presents an environmental remote sensing application using a UAV that is specifically aimed at reducing the data gap between field scale and satellite scale in soil erosion monitoring in Morocco. A fixed-wing aircraft type Sirius I (MAVinci, Germany) equipped with a digital system camera (Panasonic) is employed. UAV surveys are conducted over different study sites with varying extents and flying heights in order to provide both very high resolution site-specific data and lower-resolution overviews, thus fully exploiting the large potential of the chosen UAV for multi-scale mapping purposes. Depending on the scale and area coverage, two different approaches for georeferencing are used, based on high-precision GCPs or the UAV’s log file with exterior orientation values respectively. The photogrammetric image processing enables the creation of Digital Terrain Models (DTMs) and ortho-image mosaics with very high resolution on a sub-decimetre level. The created data products were used for quantifying gully and badland erosion in 2D and 3D as well as for the analysis of the surrounding areas and landscape development for larger extents

    Use of multi-angle high-resolution imagery and 3D information for urban land-cover classification: a case study on Istanbul

    Get PDF
    The BELSPO-MAMUD project focuses on the use of Remote Sensing data for measuring and modelling urban dynamics. Remote sensing is a wonderful tool to produce long time-series of high resolution maps of sealed surface useful for this purpose. In the urban context of Istanbul, a very dynamic city, recent high resolution satellite images and medium resolution images from the past have been exploited to calibrate and validate a regression-based sub-pixel classification method allowing this production. In this context it’s a tricky task for several reasons: prominent occurrence of shadowed and occluded areas and urban canyons, spectral confusions between urban and non-urban materials at ground and roof levels, moderately hilly relief ... To cope with these difficulties the combined use of three types of data may be helpful: diachronic (i), multi-angle and 3D data. A master multispectral and panchromatic QuickBird image and a panchromatic Ikonos stereopair, all acquired in March 2002, were used in combination with a multispectral and panchromatic Ikonos image of May 2005. A DSM was generated from the Ikonos stereopair and building vector file. It was used for orthorectification, building height estimation and classification procedure. The area covered by the high resolution products was divided in 3 partitions and each one was classified independently. This application demonstrates that recent high resolution land-cover classification produced using multi-date, multi-angle and DSM can be used to produce sealed surface maps from longer timeseries of medium resolution images over large urban areas enabling so the analysis of urban dynamics

    As-Built 3D Heritage City Modelling to Support Numerical Structural Analysis: Application to the Assessment of an Archaeological Remain

    Get PDF
    Terrestrial laser scanning is a widely used technology to digitise archaeological, architectural and cultural heritage. This allows for modelling the assets’ real condition in comparison with traditional data acquisition methods. This paper, based on the case study of the basilica in the Baelo Claudia archaeological ensemble (Tarifa, Spain), justifies the need of accurate heritage modelling against excessively simplified approaches in order to support structural safety analysis. To do this, after validating the 3Dmeshing process frompoint cloud data, the semi-automatic digital reconstitution of the basilica columns is performed. Next, a geometric analysis is conducted to calculate the structural alterations of the columns. In order to determine the structural performance, focusing both on the accuracy and suitability of the geometric models, static and modal analyses are carried out by means of the finite element method (FEM) on three different models for the most unfavourable column in terms of structural damage: (1) as-built (2) simplified and (3) ideal model without deformations. Finally, the outcomes show that the as-built modelling enhances the conservation status analysis of the 3D heritage city (in terms of realistic compliance factor values), although further automation still needs to be implemented in the modelling process

    Planning Support Systems: Progress, Predictions, and Speculations on the Shape of Things to Come

    Get PDF
    In this paper, we review the brief history of planning support systems, sketching the way both the fields of planning and the software that supports and informs various planning tasks have fragmented and diversified. This is due to many forces which range from changing conceptions of what planning is for and who should be involved, to the rapid dissemination of computers and their software, set against the general quest to build ever more generalized software products applicable to as many activities as possible. We identify two main drivers – the move to visualization which dominates our very interaction with the computer and the move to disseminate and share software data and ideas across the web. We attempt a brief and somewhat unsatisfactory classification of tools for PSS in terms of the planning process and the software that has evolved, but this does serve to point up the state-ofthe- art and to focus our attention on the near and medium term future. We illustrate many of these issues with three exemplars: first a land usetransportation model (LUTM) as part of a concern for climate change, second a visualization of cities in their third dimension which is driving an interest in what places look like and in London, a concern for high buildings, and finally various web-based services we are developing to share spatial data which in turn suggests ways in which stakeholders can begin to define urban issues collaboratively. All these are elements in the larger scheme of things – in the development of online collaboratories for planning support. Our review far from comprehensive and our examples are simply indicative, not definitive. We conclude with some brief suggestions for the future

    CAST – City analysis simulation tool: an integrated model of land use, population, transport and economics

    Get PDF
    The paper reports on research into city modelling based on principles of Science of Complexity. It focuses on integration of major processes in cities, such as economics, land use, transport and population movement. This is achieved using an extended Cellular Automata model, which allows cells to form networks, and operate on individual financial budgets. There are 22 cell types with individual processes in them. The formation of networks is based on supply and demand mechanisms for products, skills, accommodation, and services. Demand for transport is obtained as an emergent property of the system resulting from the network connectivity and relevant economic mechanisms. Population movement is a consequence of mechanisms in the housing and skill markets. Income and expenditure of cells are self-regulated through market mechanisms and changing patterns of land use are a consequence of collective interaction of all mechanisms in the model, which are integrated through emergence

    From buildings to cities: techniques for the multi-scale analysis of urban form and function

    Get PDF
    The built environment is a significant factor in many urban processes, yet direct measures of built form are seldom used in geographical studies. Representation and analysis of urban form and function could provide new insights and improve the evidence base for research. So far progress has been slow due to limited data availability, computational demands, and a lack of methods to integrate built environment data with aggregate geographical analysis. Spatial data and computational improvements are overcoming some of these problems, but there remains a need for techniques to process and aggregate urban form data. Here we develop a Built Environment Model of urban function and dwelling type classifications for Greater London, based on detailed topographic and address-based data (sourced from Ordnance Survey MasterMap). The multi-scale approach allows the Built Environment Model to be viewed at fine-scales for local planning contexts, and at city-wide scales for aggregate geographical analysis, allowing an improved understanding of urban processes. This flexibility is illustrated in the two examples, that of urban function and residential type analysis, where both local-scale urban clustering and city-wide trends in density and agglomeration are shown. While we demonstrate the multi-scale Built Environment Model to be a viable approach, a number of accuracy issues are identified, including the limitations of 2D data, inaccuracies in commercial function data and problems with temporal attribution. These limitations currently restrict the more advanced applications of the Built Environment Model
    • 

    corecore