92,370 research outputs found

    Consensus and meta-analysis regulatory networks for combining multiple microarray gene expression datasets

    Get PDF
    Microarray data is a key source of experimental data for modelling gene regulatory interactions from expression levels. With the rapid increase of publicly available microarray data comes the opportunity to produce regulatory network models based on multiple datasets. Such models are potentially more robust with greater confidence, and place less reliance on a single dataset. However, combining datasets directly can be difficult as experiments are often conducted on different microarray platforms, and in different laboratories leading to inherent biases in the data that are not always removed through pre-processing such as normalisation. In this paper we compare two frameworks for combining microarray datasets to model regulatory networks: pre- and post-learning aggregation. In pre-learning approaches, such as using simple scale-normalisation prior to the concatenation of datasets, a model is learnt from a combined dataset, whilst in post-learning aggregation individual models are learnt from each dataset and the models are combined. We present two novel approaches for post-learning aggregation, each based on aggregating high-level features of Bayesian network models that have been generated from different microarray expression datasets. Meta-analysis Bayesian networks are based on combining statistical confidences attached to network edges whilst Consensus Bayesian networks identify consistent network features across all datasets. We apply both approaches to multiple datasets from synthetic and real (Escherichia coli and yeast) networks and demonstrate that both methods can improve on networks learnt from a single dataset or an aggregated dataset formed using a standard scale-normalisation

    Methods for interpreting lists of affected genes obstained in a DNA microarray experiment

    Get PDF
    Background - The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. Results - Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. Conclusion - It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experimen

    Meta-analysis for pathway enrichment analysis and biomarker detection when combining multiple genomic studies

    Get PDF
    This thesis focuses on applying meta-analysis methods for combining genomic studies on biomarker detection and pathway enrichment analysis. DNA microarray technology has been maturely developed in the past decade and led to an explosion on publicly available microarray data sets. However, the noisy nature of DNA microarray technology results in low reproducibility across microarray studies. Therefore, it is of interest to apply meta-analysis to microarray data to increase the reliability and robustness of results from individual studies. Currently most meta-analysis methods for combining genomic studies focus on biomarker detection, and meta-analysis for pathway analysis has not been systematically pursued. We investigated two natural approaches of meta-analysis for pathway enrichment (MAPE) by combining statistical significance across studies at the gene level (MAPE_G) or at the pathway level (MAPE_P). Simulation results showed increased statistical power of both approaches and their complementary advantages under different scenarios. We also developed an integrated method (MAPE_I) that incorporates advantages of both approaches. Applications to real data on drug response of a breast cancer cell line, lung and prostate cancer tissues were evaluated to compare the performance of the different methods. MAPE_P has the general advantage of not requiring gene matching across studies. When MAPE_G and MAPE_P show complementary advantages, the integrated version MAPE_I is recommended. A software package named MetaPath, was implemented to perform the MAPE analysis. In addition to developing MAPE methods, we also applied meta-analysis approach to chemotherapy research to discover robust biomarkers and multi-drug response genes, which have prognostic value and the potential of identifying new therapeutic targets

    Globaltest and GOEAST: two different approaches for Gene Ontology analysis

    Get PDF
    Background Gene set analysis is a commonly used method for analysing microarray data by considering groups of functionally related genes instead of individual genes. Here we present the use of two gene set analysis approaches: Globaltest and GOEAST. Globaltest is a method for testing whether sets of genes are significantly associated with a variable of interest. GOEAST is a freely accessible web-based tool to test GO term enrichment within given gene sets. The two approaches were applied in the analysis of gene lists obtained from three different contrasts in a microarray experiment conducted to study the host reactions in broilers following Eimeria infection. Results The Globaltest identified significantly associated gene sets in one of the three contrasts made in the microarray experiment whereas the functional analysis of the differentially expressed genes using GOEAST revealed enriched GO terms in all three contrasts. Conclusion Globaltest and GOEAST gave different results, probably due to the different algorithms and the different criteria used for evaluating the significance of GO terms

    amda 2 13 a major update for automated cross platform microarray data analysis

    Get PDF
    Microarray platforms require analytical pipelines with modules for data pre-processing including data normalization, statistical analysis for identification of differentially expressed genes, cluster analysis, and functional annotation. We previously developed the Automated Microarray Data Analysis (AMDA, version 2.3.5) pipeline to process Affymetrix 3ā€² IVT GeneChips. The availability of newer technologies that demand open-source tools for microarray data analysis has impelled us to develop an updated multi-platform version, AMDA 2.13. It includes additional quality control metrics, annotation-driven (annotation grade of Affymetrix NetAffx) and signal-driven (Inter-Quartile Range) gene filtering, and approaches to experimental design. To enhance understanding of biological data, differentially expressed genes have been mapped into KEGG pathways. Finally, a more stable and user-friendly interface was designed to integrate the requirements for different platforms. AMDA 2.13 allows the analysis of Affymetrix..

    The EADGENE Microarray Data Analysis Workshop (Open Access publication)

    Get PDF
    Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from 10 countries performed and discussed the statistical analyses of real and simulated 2-colour microarray data that were distributed among participants. The real data consisted of 48 microarrays from a disease challenge experiment in dairy cattle, while the simulated data consisted of 10 microarrays from a direct comparison of two treatments (dye-balanced). While there was broader agreement with regards to methods of microarray normalisation and significance testing, there were major differences with regards to quality control. The quality control approaches varied from none, through using statistical weights, to omitting a large number of spots or omitting entire slides. Surprisingly, these very different approaches gave quite similar results when applied to the simulated data, although not all participating groups analysed both real and simulated data. The workshop was very successful in facilitating interaction between scientists with a diverse background but a common interest in microarray analyses

    Review of the literature examining the correlation among DNA microarray technologies

    Get PDF
    DNA microarray technologies are used in a variety of biological disciplines. The diversity of platforms and analytical methods employed has raised concerns over the reliability, reproducibility and correlation of data produced across the different approaches. Initial investigations (years 2000ā€“2003) found discrepancies in the gene expression measures produced by different microarray technologies. Increasing knowledge and control of the factors that result in poor correlation among the technologies has led to much higher levels of correlation among more recent publications (years 2004 to present). Here, we review the studies examining the correlation among microarray technologies. We find that with improvements in the technology (optimization and standardization of methods, including data analysis) and annotation, analysis across platforms yields highly correlated and reproducible results. We suggest several key factors that should be controlled in comparing across technologies, and are good microarray practice in general. Environ. Mol. Mutagen. 48:380ā€“394, 2007. Ā© 2007 Wiley-Liss, Inc

    Clustering Gene Expression Data Based on Predicted Differential Effects of GV Interaction

    Get PDF
    Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent ā€œnoiseā€ within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation

    Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis

    Get PDF
    Background: Analysing gene expression data from microarray technologies is a very important task in biology and medicine, and particularly in cancer diagnosis. Different from most other popular methods in high dimensional bio-medical data analysis, such as microarray gene expression or proteomics mass spectroscopy data analysis, fuzzy rule-based models can not only provide good classification results, but also easily be explained and interpreted in human understandable terms, by using fuzzy rules. However, the advantages offered by fuzzy-based techniques in microarray data analysis have not yet been fully explored in the literature. Although some recently developed fuzzy-based modeling approaches can provide satisfactory classification results, the rule bases generated by most of the reported fuzzy models for gene expression data are still too large to be easily comprehensible. Results: In this paper, we develop some Multi-Objective Evolutionary Algorithms based Interpretable Fuzzy (MOEAIF) methods for analysing high dimensional bio-medical data sets, such as microarray gene expression data and proteomics mass spectroscopy data. We mainly focus on evaluating our proposed models on microarray gene expression cancer data sets, i.e., the lung cancer data set and the colon cancer data set, but we extend our investigations to other type of cancer data set, such as the ovarian cancer data set. The experimental studies have shown that relatively simple and small fuzzy rule bases, with satisfactory classification performance, can be successfully obtained for challenging microarray gene expression datasets. Conclusions: We believe that fuzzy-based techniques, and in particular the methods proposed in this paper, can be very useful tools in dealing with high dimensional cancer data. We also argue that the potential of applying fuzzy-based techniques to microarray data analysis need to be further explored. </p

    Exploring matrix factorization techniques for significant genes identification of Alzheimerā€™s disease microarray gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The wide use of high-throughput DNA microarray technology provide an increasingly detailed view of human transcriptome from hundreds to thousands of genes. Although biomedical researchers typically design microarray experiments to explore specific biological contexts, the relationships between genes are hard to identified because they are complex and noisy high-dimensional data and are often hindered by low statistical power. The main challenge now is to extract valuable biological information from the colossal amount of data to gain insight into biological processes and the mechanisms of human disease. To overcome the challenge requires mathematical and computational methods that are versatile enough to capture the underlying biological features and simple enough to be applied efficiently to large datasets.</p> <p>Methods</p> <p>Unsupervised machine learning approaches provide new and efficient analysis of gene expression profiles. In our study, two unsupervised knowledge-based matrix factorization methods, independent component analysis (ICA) and nonnegative matrix factorization (NMF) are integrated to identify significant genes and related pathways in microarray gene expression dataset of Alzheimerā€™s disease. The advantage of these two approaches is they can be performed as a biclustering method by which genes and conditions can be clustered simultaneously. Furthermore, they can group genes into different categories for identifying related diagnostic pathways and regulatory networks. The difference between these two method lies in ICA assume statistical independence of the expression modes, while NMF need positivity constrains to generate localized gene expression profiles.</p> <p>Results</p> <p>In our work, we performed FastICA and non-smooth NMF methods on DNA microarray gene expression data of Alzheimerā€™s disease respectively. The simulation results shows that both of the methods can clearly classify severe AD samples from control samples, and the biological analysis of the identified significant genes and their related pathways demonstrated that these genes play a prominent role in AD and relate the activation patterns to AD phenotypes. It is validated that the combination of these two methods is efficient.</p> <p>Conclusions</p> <p>Unsupervised matrix factorization methods provide efficient tools to analyze high-throughput microarray dataset. According to the facts that different unsupervised approaches explore correlations in the high-dimensional data space and identify relevant subspace base on different hypotheses, integrating these methods to explore the underlying biological information from microarray dataset is an efficient approach. By combining the significant genes identified by both ICA and NMF, the biological analysis shows great efficient for elucidating the molecular taxonomy of Alzheimerā€™s disease and enable better experimental design to further identify potential pathways and therapeutic targets of AD.</p
    • ā€¦
    corecore