4,681 research outputs found

    Cortical spatio-temporal dimensionality reduction for visual grouping

    Full text link
    The visual systems of many mammals, including humans, is able to integrate the geometric information of visual stimuli and to perform cognitive tasks already at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at single cell level and geometric processing by means of cells connectivity. We present a geometric model of such connectivities in the space of detected features associated to spatio-temporal visual stimuli, and show how they can be used to obtain low-level object segmentation. The main idea is that of defining a spectral clustering procedure with anisotropic affinities over datasets consisting of embeddings of the visual stimuli into higher dimensional spaces. Neural plausibility of the proposed arguments will be discussed

    The Inhuman Overhang: On Differential Heterogenesis and Multi-Scalar Modeling

    Get PDF
    As a philosophical paradigm, differential heterogenesis offers us a novel descriptive vantage with which to inscribe Deleuze’s virtuality within the terrain of “differential becoming,” conjugating “pure saliences” so as to parse economies, microhistories, insurgencies, and epistemological evolutionary processes that can be conceived of independently from their representational form. Unlike Gestalt theory’s oppositional constructions, the advantage of this aperture is that it posits a dynamic context to both media and its analysis, rendering them functionally tractable and set in relation to other objects, rather than as sedentary identities. Surveying the genealogy of differential heterogenesis with particular interest in the legacy of Lautman’s dialectic, I make the case for a reading of the Deleuzean virtual that departs from an event-oriented approach, galvanizing Sarti and Citti’s dynamic a priori vis-à-vis Deleuze’s philosophy of difference. Specifically, I posit differential heterogenesis as frame with which to examine our contemporaneous epistemic shift as it relates to multi-scalar computational modeling while paying particular attention to neuro-inferential modes of inductive learning and homologous cognitive architecture. Carving a bricolage between Mark Wilson’s work on the “greediness of scales” and Deleuze’s “scales of reality”, this project threads between static ecologies and active externalism vis-à-vis endocentric frames of reference and syntactical scaffolding

    On the Nature and Shape of Tubulin Trails: Implications on Microtubule Self-Organization

    Full text link
    Microtubules, major elements of the cell skeleton are, most of the time, well organized in vivo, but they can also show self-organizing behaviors in time and/or space in purified solutions in vitro. Theoretical studies and models based on the concepts of collective dynamics in complex systems, reaction-diffusion processes and emergent phenomena were proposed to explain some of these behaviors. In the particular case of microtubule spatial self-organization, it has been advanced that microtubules could behave like ants, self-organizing by 'talking to each other' by way of hypothetic (because never observed) concentrated chemical trails of tubulin that are expected to be released by their disassembling ends. Deterministic models based on this idea yielded indeed like-looking spatio-temporal self-organizing behaviors. Nevertheless the question remains of whether microscopic tubulin trails produced by individual or bundles of several microtubules are intense enough to allow microtubule self-organization at a macroscopic level. In the present work, by simulating the diffusion of tubulin in microtubule solutions at the microscopic scale, we measure the shape and intensity of tubulin trails and discuss about the assumption of microtubule self-organization due to the production of chemical trails by disassembling microtubules. We show that the tubulin trails produced by individual microtubules or small microtubule arrays are very weak and not elongated even at very high reactive rates. Although the variations of concentration due to such trails are not significant compared to natural fluctuations of the concentration of tubuline in the chemical environment, the study shows that heterogeneities of biochemical composition can form due to microtubule disassembly. They could become significant when produced by numerous microtubule ends located in the same place. Their possible formation could play a role in certain conditions of reaction. In particular, it gives a mesoscopic basis to explain the collective dynamics observed in excitable microtubule solutions showing the propagation of concentration waves of microtubules at the millimeter scale, although we doubt that individual microtubules or bundles can behave like molecular ants

    Anisotropic Diffusion Partial Differential Equations in Multi-Channel Image Processing : Framework and Applications

    Get PDF
    We review recent methods based on diffusion PDE's (Partial Differential Equations) for the purpose of multi-channel image regularization. Such methods have the ability to smooth multi-channel images anisotropically and can preserve then image contours while removing noise or other undesired local artifacts. We point out the pros and cons of the existing equations, providing at each time a local geometric interpretation of the corresponding processes. We focus then on an alternate and generic tensor-driven formulation, able to regularize images while specifically taking the curvatures of local image structures into account. This particular diffusion PDE variant is actually well suited for the preservation of thin structures and gives regularization results where important image features can be particularly well preserved compared to its competitors. A direct link between this curvature-preserving equation and a continuous formulation of the Line Integral Convolution technique (Cabral and Leedom, 1993) is demonstrated. It allows the design of a very fast and stable numerical scheme which implements the multi-valued regularization method by successive integrations of the pixel values along curved integral lines. Besides, the proposed implementation, based on a fourth-order Runge Kutta numerical integration, can be applied with a subpixel accuracy and preserves then thin image structures much better than classical finite-differences discretizations, usually chosen to implement PDE-based diffusions. We finally illustrate the efficiency of this diffusion PDE's for multi-channel image regularization - in terms of speed and visual quality - with various applications and results on color images, including image denoising, inpainting and edge-preserving interpolation

    Anisotropic Diffusion Filter with Memory based on Speckle Statistics for Ultrasound Images

    Get PDF
    Ultrasound imaging exhibits considerable difficulties for medical visual inspection and for the development of automatic analysis methods due to speckle, which negatively affects the perception of tissue boundaries and the performance of automatic segmentation methods. With the aim of alleviating the effect of speckle, many filtering techniques are usually considered as a preprocessing step prior to automatic analysis methods or visual inspection. Most of the state-of-the-art filters try to reduce the speckle effect without considering its relevance for the characterization of tissue nature. However, the speckle phenomenon is the inherent response of echo signals in tissues and can provide important features for clinical purposes. This loss of information is even magnified due to the iterative process of some speckle filters, e.g., diffusion filters, which tend to produce over-filtering because of the progressive loss of relevant information for diagnostic purposes during the diffusion process. In this work, we propose an anisotropic diffusion filter with a probabilistic-driven memory mechanism to overcome the over-filtering problem by following a tissue selective philosophy. Specifically, we formulate the memory mechanism as a delay differential equation for the diffusion tensor whose behavior depends on the statistics of the tissues, by accelerating the diffusion process in meaningless regions and including the memory effect in regions where relevant details should be preserved. Results both in synthetic and real US images support the inclusion of the probabilistic memory mechanism for maintaining clinical relevant structures, which are removed by the state-of-the-art filters

    Directional diffusion models for graph representation learning

    Full text link
    In recent years, diffusion models have achieved remarkable success in various domains of artificial intelligence, such as image synthesis, super-resolution, and 3D molecule generation. However, the application of diffusion models in graph learning has received relatively little attention. In this paper, we address this gap by investigating the use of diffusion models for unsupervised graph representation learning. We begin by identifying the anisotropic structures of graphs and a crucial limitation of the vanilla forward diffusion process in learning anisotropic structures. This process relies on continuously adding an isotropic Gaussian noise to the data, which may convert the anisotropic signals to noise too quickly. This rapid conversion hampers the training of denoising neural networks and impedes the acquisition of semantically meaningful representations in the reverse process. To address this challenge, we propose a new class of models called {\it directional diffusion models}. These models incorporate data-dependent, anisotropic, and directional noises in the forward diffusion process. To assess the efficacy of our proposed models, we conduct extensive experiments on 12 publicly available datasets, focusing on two distinct graph representation learning tasks. The experimental results demonstrate the superiority of our models over state-of-the-art baselines, indicating their effectiveness in capturing meaningful graph representations. Our studies not only provide valuable insights into the forward process of diffusion models but also highlight the wide-ranging potential of these models for various graph-related tasks

    Constitutive Models for Tumour Classification

    Get PDF
    The aim of this paper is to formulate new mathematical models that will be able to differentiate not only between normal and abnormal tissues, but, more importantly, between benign and malignant tumours. We present preliminary results of a tri-phasic model and numerical simulations of the effect of cellular adhesion forces on the mechanical properties of biological tissues. We pursued the following three approaches: (i) the simulation of the time-harmonic linear elastic models to examine coarse scale effects and adhesion properties, (ii) the investigation of a tri-phasic model, with the intent of upscaling this model to determine effects of electro-mechanical coupling between cells, and (iii) the upscaling of a simple cell model as a framework for studying interface conditions at malignant cells. Each of these approaches has opened exciting new directions of research that we plan to study in the future

    Image restoration: Wavelet frame shrinkage, nonlinear evolution PDEs, and beyond

    Get PDF
    In the past few decades, mathematics based approaches have been widely adopted in various image restoration problems; the partial differential equation (PDE) based approach (e.g., the total variation model [L. Rudin, S. Osher, and E. Fatemi, Phys. D, 60 (1992), pp. 259-268] and its generalizations, nonlinear diffusions [P. Perona and J. Malik, IEEE Trans. Pattern Anal. Mach. Intel., 12 (1990), pp. 629-639; F. Catte et al., SIAM J. Numer. Anal., 29 (1992), pp. 182-193], etc.) and wavelet frame based approach are some successful examples. These approaches were developed through different paths and generally provided understanding from different angles of the same problem. As shown in numerical simulations, implementations of the wavelet frame based approach and the PDE based approach quite often end up solving a similar numerical problem with similar numerical behaviors, even though different approaches have advantages in different applications. Since wavelet frame based and PDE based approaches have all been modeling the same types of problems with success, it is natural to ask whether the wavelet frame based approach is fundamentally connected with the PDE based approach when we trace them all the way back to their roots. A fundamental connection of a wavelet frame based approach with a total variation model and its generalizations was established in [J. Cai, B. Dong, S. Osher, and Z. Shen, J. Amer. Math. Soc., 25 (2012), pp. 1033-1089]. This connection gives the wavelet frame based approach a geometric explanation and, at the same time, it equips a PDE based approach with a time frequency analysis. Cai et al. showed that a special type of wavelet frame model using generic wavelet frame systems can be regarded as an approximation of a generic variational model (with the total variation model as a special case) in the discrete setting. A systematic convergence analysis, as the resolution of the image goes to infinity, which is the key step in linking the two approaches, is also given in Cai et al. Motivated by Cai et al. and [Q. Jiang, Appl. Numer. Math., 62 (2012), pp. 51-66], this paper establishes a fundamental connection between the wavelet frame based approach and nonlinear evolution PDEs, provides interpretations and analytical studies of such connections, and proposes new algorithms for image restoration based on the new understandings. Together with the results in [J. Cai et al., J. Amer. Math. Soc., 25 (2012), pp. 1033-1089], we now have a better picture of how the wavelet frame based approach can be used to interpret the general PDE based approach (e.g., the variational models or nonlinear evolution PDEs) and can be used as a new and useful tool in numerical analysis to discretize and solve various variational and PDE models. To be more precise, we shall establish the following: (1) The connections between wavelet frame shrinkage and nonlinear evolution PDEs provide new and inspiring interpretations of both approaches that enable us to derive new PDE models and (better) wavelet frame shrinkage algorithms for image restoration. (2) A generic nonlinear evolution PDE (of parabolic or hyperbolic type) can be approximated by wavelet frame shrinkage with properly chosen wavelet frame systems and carefully designed shrinkage functions. (3) The main idea of this work is beyond the scope of image restoration. Our analysis and discussions indicate that wavelet frame shrinkage is a new way of solving PDEs in general, which will provide a new insight that will enrich the existing theory and applications of numerical PDEs, as well as those of wavelet frames
    • …
    corecore