6,868 research outputs found

    A Model-Based Approach to Impact Analysis Using Model Differencing

    Get PDF
    Impact analysis is concerned with the identification of consequences of changes and is therefore an important activity for software evolution. In modelbased software development, models are core artifacts, which are often used to generate essential parts of a software system. Changes to a model can thus substantially affect different artifacts of a software system. In this paper, we propose a modelbased approach to impact analysis, in which explicit impact rules can be specified in a domain specific language (DSL). These impact rules define consequences of designated UML class diagram changes on software artifacts and the need of dependent activities such as data evolution. The UML class diagram changes are identified automatically using model differencing. The advantage of using explicit impact rules is that they enable the formalization of knowledge about a product. By explicitly defining this knowledge, it is possible to create a checklist with hints about development steps that are (potentially) necessary to manage the evolution. To validate the feasibility of our approach, we provide results of a case study.Comment: 16 pages, 5 figures, In: Proceedings of the 8th International Workshop on Software Quality and Maintainability (SQM), ECEASST Journal, vol. 65 201

    Auto-coding UML statecharts for flight software

    Get PDF
    Statecharts have been used as a means to communicate behaviors in a precise manner between system engineers and software engineers. Handtranslating a statechart to code, as done on some previous space missions, introduces the possibility of errors in the transformation from chart to code. To improve auto-coding, we have developed a process that generates flight code from UML statecharts. Our process is being used for the flight software on the Space Interferometer Mission (SIM)

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    An Exploratory Study of Forces and Frictions affecting Large-Scale Model-Driven Development

    Full text link
    In this paper, we investigate model-driven engineering, reporting on an exploratory case-study conducted at a large automotive company. The study consisted of interviews with 20 engineers and managers working in different roles. We found that, in the context of a large organization, contextual forces dominate the cognitive issues of using model-driven technology. The four forces we identified that are likely independent of the particular abstractions chosen as the basis of software development are the need for diffing in software product lines, the needs for problem-specific languages and types, the need for live modeling in exploratory activities, and the need for point-to-point traceability between artifacts. We also identified triggers of accidental complexity, which we refer to as points of friction introduced by languages and tools. Examples of the friction points identified are insufficient support for model diffing, point-to-point traceability, and model changes at runtime.Comment: To appear in proceedings of MODELS 2012, LNCS Springe
    corecore