3,503 research outputs found

    The simpler, the better? Presenting the COPING Android permission-granting interface for better privacy-related decisions

    Get PDF
    One of the great innovations of the modern world is the Smartphone app. The sheer multitude of available apps attests to their popularity and general ability to satisfy our wants and needs. The flip side of the functionality these apps offer is their potential for privacy invasion. Apps can, if granted permission, gather a vast amount of very personal and sensitive information. App developers might exploit the combination of human propensities and the design of the Android permission-granting interface to gain permission to access more information than they really need. This compromises personal privacy. The fact that the Android is the globally dominant phone means widespread privacy invasion is a real concern. We, and other researchers, have proposed alternatives to the Android permission-granting interface. The aim of these alternatives is to highlight privacy considerations more effectively during app installation: to ensure that privacy becomes part of the decision-making process. We report here on a study with 344 participants that compared the impact of a number of permission-granting interface proposals, including our own (called the COPING interface — COmprehensive PermIssioN Granting) and two Android interfaces. To conduct the comparison we carried out an online study with a mixed-model design. Our main finding is that the focus in these interfaces ought to be on improving the quality of the provided information rather than merely simplifying the interface. The intuitive approach is to reduce and simplify information, but we discovered that this actually impairs the quality of the decision. Our recommendation is that further investigation is required in order to find the “sweet spot” where understandability and comprehensiveness are maximised

    Mobile Application Security Platforms Survey

    Get PDF
    Nowadays Smartphone and other mobile devices have become incredibly important in every aspect of our life. Because they have practically offered same capabilities as desktop workstations as well as come to be powerful in terms of CPU (Central processing Unit), Storage and installing numerous applications. Therefore, Security is considered as an important factor in wireless communication technologies, particularly in a wireless ad-hoc network and mobile operating systems. Moreover, based on increasing the range of mobile application within variety of platforms, security is regarded as on the most valuable and considerable debate in terms of issues, trustees, reliabilities and accuracy. This paper aims to introduce a consolidated report of thriving security on mobile application platforms and providing knowledge of vital threats to the users and enterprises. Furthermore, in this paper, various techniques as well as methods for security measurements, analysis and prioritization within the peak of mobile platforms will be presented. Additionally, increases understanding and awareness of security on mobile application platforms to avoid detection, forensics and countermeasures used by the operating systems. Finally, this study also discusses security extensions for popular mobile platforms and analysis for a survey within a recent research in the area of mobile platform security

    Why do People Adopt, or Reject, Smartphone Security Tools?

    Get PDF
    A large variety of security tools exist for Smartphones, to help their owners to secure the phones and prevent unauthorised others from accessing their data and services. These range from screen locks to antivirus software to password managers. Yet many Smartphone owners do not use these tools despite their being free and easy to use. We were interested in exploring this apparent anomaly. A number of researchers have applied existing models of behaviour from other disciplines to try to understand these kinds of behaviours in a security context, and a great deal of research has examined adoption of screen locking mechanisms. We review the proposed models and consider how they might fail to describe adoption behaviours. We then present the Integrated Model of Behaviour Prediction (IMBP), a richer model than the ones tested thus far. We consider the kinds of factors that could be incorporated into this model in order to understand Smartphone owner adoption, or rejection, of security tools. The model seems promising, based on existing literature, and we plan to test its efficacy in future studies

    Why Do People Adopt, or Reject, Smartphone Password Managers?

    Get PDF
    People use weak passwords for a variety of reasons, the most prescient of these being memory load and inconvenience. The motivation to choose weak passwords is even more compelling on Smartphones because entering complex passwords is particularly time consuming and arduous on small devices. Many of the memory- and inconvenience-related issues can be ameliorated by using a password manager app. Such an app can generate, remember and automatically supply passwords to websites and other apps on the phone. Given this potential, it is unfortunate that these applications have not enjoyed widespread adoption. We carried out a study to find out why this was so, to investigate factors that impeded or encouraged password manager adoption. We found that a number of factors mediated during all three phases of adoption: searching, deciding and trialling. The study’s findings will help us to market these tools more effectively in order to encourage future adoption of password managers

    “You Don’t Know Where It Will Stop” -- An Inquiry into Smartphone Users' Privacy Mental Models of Contextual Integrity

    Get PDF
    The Contextual Integrity (CI) theory provides a benchmark for privacy protection or violation according to the appropriateness of information collection and flows in a certain context. As privacy threats and protections develop and vie in various mobile contexts, how smartphone users represent the benchmark CI in their minds deserves exploration. In this study, we inquired into 18 smartphone users’ privacy mental models of CI. We found that they verbalized and visualized three patterns of information flow (i.e., unidirectional lines, branching tree, and complex network) and two categories of information collection (i.e., monetization-oriented and monitoring-based). With these mental models, our participants expressed numerous privacy concerns, such as unstoppable information sharing, data monetization, and surveillance. We discussed these findings and concluded that even though mobile operating systems and apps have claimed to be privacy-friendly and protective, some users remain dubious about such claims even though their privacy mental models may not accurately reflect reality

    Encouraging Privacy-Aware Smartphone App Installation: Finding out what the Technically-Adept Do

    Get PDF
    Smartphone apps can harvest very personal details from the phone with ease. This is a particular privacy concern. Unthinking installation of untrustworthy apps constitutes risky behaviour. This could be due to poor awareness or a lack of knowhow: knowledge of how to go about protecting privacy. It seems that Smartphone owners proceed with installation, ignoring any misgivings they might have, and thereby irretrievably sacrifice their privacy

    When Technology Makes Headlines: The Media's Double Vision About the Digital Age

    Get PDF
    Analyzes technology-related news items appearing in lead sections of mainstream media for trends in popular topics, companies, and messages about technology's influence and its risks. Compares findings with trends in new media such as blogs and Twitter

    After Over-Privileged Permissions: Using Technology and Design to Create Legal Compliance

    Get PDF
    Consumers in the mobile ecosystem can putatively protect their privacy with the use of application permissions. However, this requires the mobile device owners to understand permissions and their privacy implications. Yet, few consumers appreciate the nature of permissions within the mobile ecosystem, often failing to appreciate the privacy permissions that are altered when updating an app. Even more concerning is the lack of understanding of the wide use of third-party libraries, most which are installed with automatic permissions, that is permissions that must be granted to allow the application to function appropriately. Unsurprisingly, many of these third-party permissions violate consumers’ privacy expectations and thereby, become “over-privileged” to the user. Consequently, an obscurity of privacy expectations between what is practiced by the private sector and what is deemed appropriate by the public sector is exhibited. Despite the growing attention given to privacy in the mobile ecosystem, legal literature has largely ignored the implications of mobile permissions. This article seeks to address this omission by analyzing the impacts of mobile permissions and the privacy harms experienced by consumers of mobile applications. The authors call for the review of industry self-regulation and the overreliance upon simple notice and consent. Instead, the authors set out a plan for greater attention to be paid to socio-technical solutions, focusing on better privacy protections and technology embedded within the automatic permission-based application ecosystem

    Fingerprinting Smart Devices Through Embedded Acoustic Components

    Full text link
    The widespread use of smart devices gives rise to both security and privacy concerns. Fingerprinting smart devices can assist in authenticating physical devices, but it can also jeopardize privacy by allowing remote identification without user awareness. We propose a novel fingerprinting approach that uses the microphones and speakers of smart phones to uniquely identify an individual device. During fabrication, subtle imperfections arise in device microphones and speakers which induce anomalies in produced and received sounds. We exploit this observation to fingerprint smart devices through playback and recording of audio samples. We use audio-metric tools to analyze and explore different acoustic features and analyze their ability to successfully fingerprint smart devices. Our experiments show that it is even possible to fingerprint devices that have the same vendor and model; we were able to accurately distinguish over 93% of all recorded audio clips from 15 different units of the same model. Our study identifies the prominent acoustic features capable of fingerprinting devices with high success rate and examines the effect of background noise and other variables on fingerprinting accuracy
    • 

    corecore