144,336 research outputs found

    Phase Space Sketching for Crystal Image Analysis based on Synchrosqueezed Transforms

    Full text link
    Recent developments of imaging techniques enable researchers to visualize materials at the atomic resolution to better understand the microscopic structures of materials. This paper aims at automatic and quantitative characterization of potentially complicated microscopic crystal images, providing feedback to tweak theories and improve synthesis in materials science. As such, an efficient phase-space sketching method is proposed to encode microscopic crystal images in a translation, rotation, illumination, and scale invariant representation, which is also stable with respect to small deformations. Based on the phase-space sketching, we generalize our previous analysis framework for crystal images with simple structures to those with complicated geometry

    Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images

    Full text link
    Image representations, from SIFT and bag of visual words to Convolutional Neural Networks (CNNs) are a crucial component of almost all computer vision systems. However, our understanding of them remains limited. In this paper we study several landmark representations, both shallow and deep, by a number of complementary visualization techniques. These visualizations are based on the concept of "natural pre-image", namely a natural-looking image whose representation has some notable property. We study in particular three such visualizations: inversion, in which the aim is to reconstruct an image from its representation, activation maximization, in which we search for patterns that maximally stimulate a representation component, and caricaturization, in which the visual patterns that a representation detects in an image are exaggerated. We pose these as a regularized energy-minimization framework and demonstrate its generality and effectiveness. In particular, we show that this method can invert representations such as HOG more accurately than recent alternatives while being applicable to CNNs too. Among our findings, we show that several layers in CNNs retain photographically accurate information about the image, with different degrees of geometric and photometric invariance.Comment: A substantially extended version of http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/mahendran15understanding.pdf. arXiv admin note: text overlap with arXiv:1412.003

    Particle methods enable fast and simple approximation of Sobolev gradients in image segmentation

    Full text link
    Bio-image analysis is challenging due to inhomogeneous intensity distributions and high levels of noise in the images. Bayesian inference provides a principled way for regularizing the problem using prior knowledge. A fundamental choice is how one measures "distances" between shapes in an image. It has been shown that the straightforward geometric L2 distance is degenerate and leads to pathological situations. This is avoided when using Sobolev gradients, rendering the segmentation problem less ill-posed. The high computational cost and implementation overhead of Sobolev gradients, however, have hampered practical applications. We show how particle methods as applied to image segmentation allow for a simple and computationally efficient implementation of Sobolev gradients. We show that the evaluation of Sobolev gradients amounts to particle-particle interactions along the contour in an image. We extend an existing particle-based segmentation algorithm to using Sobolev gradients. Using synthetic and real-world images, we benchmark the results for both 2D and 3D images using piecewise smooth and piecewise constant region models. The present particle approximation of Sobolev gradients is 2.8 to 10 times faster than the previous reference implementation, but retains the known favorable properties of Sobolev gradients. This speedup is achieved by using local particle-particle interactions instead of solving a global Poisson equation at each iteration. The computational time per iteration is higher for Sobolev gradients than for L2 gradients. Since Sobolev gradients precondition the optimization problem, however, a smaller number of overall iterations may be necessary for the algorithm to converge, which can in some cases amortize the higher per-iteration cost.Comment: 21 pages, 10 figure

    Face Retrieval using Frequency Decoded Local Descriptor

    Full text link
    The local descriptors have been the backbone of most of the computer vision problems. Most of the existing local descriptors are generated over the raw input images. In order to increase the discriminative power of the local descriptors, some researchers converted the raw image into multiple images with the help of some high and low pass frequency filters, then the local descriptors are computed over each filtered image and finally concatenated into a single descriptor. By doing so, these approaches do not utilize the inter frequency relationship which causes the less improvement in the discriminative power of the descriptor that could be achieved. In this paper, this problem is solved by utilizing the decoder concept of multi-channel decoded local binary pattern over the multi-frequency patterns. A frequency decoded local binary pattern (FDLBP) is proposed with two decoders. Each decoder works with one low frequency pattern and two high frequency patterns. Finally, the descriptors from both decoders are concatenated to form the single descriptor. The face retrieval experiments are conducted over four benchmarks and challenging databases such as PaSC, LFW, PubFig, and ESSEX. The experimental results confirm the superiority of the FDLBP descriptor as compared to the state-of-the-art descriptors such as LBP, SOBEL_LBP, BoF_LBP, SVD_S_LBP, mdLBP, etc.Comment: Accepted in Multimedia Tools and Applications, Springe

    Local Color Contrastive Descriptor for Image Classification

    Full text link
    Image representation and classification are two fundamental tasks towards multimedia content retrieval and understanding. The idea that shape and texture information (e.g. edge or orientation) are the key features for visual representation is ingrained and dominated in current multimedia and computer vision communities. A number of low-level features have been proposed by computing local gradients (e.g. SIFT, LBP and HOG), and have achieved great successes on numerous multimedia applications. In this paper, we present a simple yet efficient local descriptor for image classification, referred as Local Color Contrastive Descriptor (LCCD), by leveraging the neural mechanisms of color contrast. The idea originates from the observation in neural science that color and shape information are linked inextricably in visual cortical processing. The color contrast yields key information for visual color perception and provides strong linkage between color and shape. We propose a novel contrastive mechanism to compute the color contrast in both spatial location and multiple channels. The color contrast is computed by measuring \emph{f}-divergence between the color distributions of two regions. Our descriptor enriches local image representation with both color and contrast information. We verified experimentally that it can compensate strongly for the shape based descriptor (e.g. SIFT), while keeping computationally simple. Extensive experimental results on image classification show that our descriptor improves the performance of SIFT substantially by combinations, and achieves the state-of-the-art performance on three challenging benchmark datasets. It improves recent Deep Learning model (DeCAF) [1] largely from the accuracy of 40.94% to 49.68% in the large scale SUN397 database. Codes for the LCCD will be available

    Image Processing on IOPA Radiographs: A comprehensive case study on Apical Periodontitis

    Full text link
    With the recent advancements in Image Processing Techniques and development of new robust computer vision algorithms, new areas of research within Medical Diagnosis and Biomedical Engineering are picking up pace. This paper provides a comprehensive in-depth case study of Image Processing, Feature Extraction and Analysis of Apical Periodontitis diagnostic cases in IOPA (Intra Oral Peri-Apical) Radiographs, a common case in oral diagnostic pipeline. This paper provides a detailed analytical approach towards improving the diagnostic procedure with improved and faster results with higher accuracy targeting to eliminate True Negative and False Positive cases.Comment: 15 pages, 42 figures and Submitted at ICIAP 2019: 21st International Conference on Image Analysis and Processin

    Stochastic Texture Difference for Scale-Dependent Data Analysis

    Full text link
    This article introduces the Stochastic Texture Difference method for analyzing data at prescribed spatial and value scales. This method relies on constrained random walks around each pixel, describing how nearby image values typically evolve on each side of this pixel. Textures are represented as probability distributions of such random walks, so a texture difference operator is statistically defined as a distance between these distributions in a suitable reproducing kernel Hilbert space. The method is thus not limited to scalar pixel values: any data type for which a kernel is available may be considered, from color triplets and multispectral vector data to strings, graphs, and more. By adjusting the size of the neighborhoods that are compared, the method is implicitly scale-dependent. It is also able to focus on either small changes or large gradients. We demonstrate how it can be used to infer spatial and data value characteristic scales in measured signals and natural images

    Inverse Halftoning Through Structure-Aware Deep Convolutional Neural Networks

    Full text link
    The primary issue in inverse halftoning is removing noisy dots on flat areas and restoring image structures (e.g., lines, patterns) on textured areas. Hence, a new structure-aware deep convolutional neural network that incorporates two subnetworks is proposed in this paper. One subnetwork is for image structure prediction while the other is for continuous-tone image reconstruction. First, to predict image structures, patch pairs comprising continuous-tone patches and the corresponding halftoned patches generated through digital halftoning are trained. Subsequently, gradient patches are generated by convolving gradient filters with the continuous-tone patches. The subnetwork for the image structure prediction is trained using the mini-batch gradient descent algorithm given the halftoned patches and gradient patches, which are fed into the input and loss layers of the subnetwork, respectively. Next, the predicted map including the image structures is stacked on the top of the input halftoned image through a fusion layer and fed into the image reconstruction subnetwork such that the entire network is trained adaptively to the image structures. The experimental results confirm that the proposed structure-aware network can remove noisy dot-patterns well on flat areas and restore details clearly on textured areas. Furthermore, it is demonstrated that the proposed method surpasses the conventional state-of-the-art methods based on deep convolutional neural networks and locally learned dictionaries

    Image Restoration using Autoencoding Priors

    Full text link
    We propose to leverage denoising autoencoder networks as priors to address image restoration problems. We build on the key observation that the output of an optimal denoising autoencoder is a local mean of the true data density, and the autoencoder error (the difference between the output and input of the trained autoencoder) is a mean shift vector. We use the magnitude of this mean shift vector, that is, the distance to the local mean, as the negative log likelihood of our natural image prior. For image restoration, we maximize the likelihood using gradient descent by backpropagating the autoencoder error. A key advantage of our approach is that we do not need to train separate networks for different image restoration tasks, such as non-blind deconvolution with different kernels, or super-resolution at different magnification factors. We demonstrate state of the art results for non-blind deconvolution and super-resolution using the same autoencoding prior

    Adversarial Manipulation of Deep Representations

    Full text link
    We show that the representation of an image in a deep neural network (DNN) can be manipulated to mimic those of other natural images, with only minor, imperceptible perturbations to the original image. Previous methods for generating adversarial images focused on image perturbations designed to produce erroneous class labels, while we concentrate on the internal layers of DNN representations. In this way our new class of adversarial images differs qualitatively from others. While the adversary is perceptually similar to one image, its internal representation appears remarkably similar to a different image, one from a different class, bearing little if any apparent similarity to the input; they appear generic and consistent with the space of natural images. This phenomenon raises questions about DNN representations, as well as the properties of natural images themselves.Comment: Accepted as a conference paper at ICLR 201
    • …
    corecore