10,465 research outputs found

    Difference of Convex Functions Programming Applied to Control with Expert Data

    Get PDF
    This paper reports applications of Difference of Convex functions (DC) programming to Learning from Demonstrations (LfD) and Reinforcement Learning (RL) with expert data. This is made possible because the norm of the Optimal Bellman Residual (OBR), which is at the heart of many RL and LfD algorithms, is DC. Improvement in performance is demonstrated on two specific algorithms, namely Reward-regularized Classification for Apprenticeship Learning (RCAL) and Reinforcement Learning with Expert Demonstrations (RLED), through experiments on generic Markov Decision Processes (MDP), called Garnets

    Difference of Convex Functions Programming Applied to Control with Expert Data

    Get PDF
    This paper reports applications of Difference of Convex functions (DC) programming to Learning from Demonstrations (LfD) and Reinforcement Learning (RL) with expert data. This is made possible because the norm of the Optimal Bellman Residual (OBR), which is at the heart of many RL and LfD algorithms, is DC. Improvement in performance is demonstrated on two specific algorithms, namely Reward-regularized Classification for Apprenticeship Learning (RCAL) and Reinforcement Learning with Expert Demonstrations (RLED), through experiments on generic Markov Decision Processes (MDP), called Garnets

    Probabilistic inverse reinforcement learning in unknown environments

    Full text link
    We consider the problem of learning by demonstration from agents acting in unknown stochastic Markov environments or games. Our aim is to estimate agent preferences in order to construct improved policies for the same task that the agents are trying to solve. To do so, we extend previous probabilistic approaches for inverse reinforcement learning in known MDPs to the case of unknown dynamics or opponents. We do this by deriving two simplified probabilistic models of the demonstrator's policy and utility. For tractability, we use maximum a posteriori estimation rather than full Bayesian inference. Under a flat prior, this results in a convex optimisation problem. We find that the resulting algorithms are highly competitive against a variety of other methods for inverse reinforcement learning that do have knowledge of the dynamics.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013
    • …
    corecore