361,703 research outputs found

    Beyond direct simulation Monte Carlo (DSMC) modelling of collision environments

    No full text
    Direct simulation Monte Carlo (DSMC) models have been successfully adopted and adapted to describe gas flows in a wide range of environments since the method was first introduced by Bird in the 1960s. We propose a new approach to modelling collisions between gas-phase particles in this work - operating in a similar way to the DSMC model, but with one key difference. Particles move in a mean field, generated by all previously propagated particles, which removes the requirement that all particles be propagated simultaneously. This yields a significant reduction in computation effort and lends itself to applications for which DSMC becomes intractable, such as when a species of interest is only a minor component of a large gas mixture

    Efficient acoustic modelling of large acoustic spaces using finite difference methods.

    Get PDF
    Time domain methods for solving wave based acoustic models have been of continued interest and development since early work by key figures such as Bottledooren, as these methods can provide a simple and flexible approach for simulating a wide range of acoustic phenomena such as room modes. The nature of many time domain difference methods present significant computational resource requirements, as the size, sampling rate and inherent stability of the simulation has a distinct impact on the memory and execution time required for the simulation to give a satisfactory result. In this study the execution speed is analysed, for variations of the finite difference time domain method that may provide some increase in computation speed for large domains. It is suggested that leveraging a dynamic windowing method may reduce total computation time for some simulations, by decreasing the number of computations per time-step in the early stage of a simulation.N/

    Research on Efficiency Analysis of Microservices

    Full text link
    With the maturity of web services, containers, and cloud computing technologies, large services in traditional systems (e.g. the computation services of machine learning and artificial intelligence) are gradually being broken down into many microservices to increase service reusability and flexibility. Therefore, this study proposes an efficiency analysis framework based on queuing models to analyze the efficiency difference of breaking down traditional large services into n microservices. For generalization, this study considers different service time distributions (e.g. exponential distribution of service time and fixed service time) and explores the system efficiency in the worst-case and best-case scenarios through queuing models (i.e. M/M/1 queuing model and M/D/1 queuing model). In each experiment, it was shown that the total time required for the original large service was higher than that required for breaking it down into multiple microservices, so breaking it down into multiple microservices can improve system efficiency. It can also be observed that in the best-case scenario, the improvement effect becomes more significant with an increase in arrival rate. However, in the worst-case scenario, only slight improvement was achieved. This study found that breaking down into multiple microservices can effectively improve system efficiency and proved that when the computation time of the large service is evenly distributed among multiple microservices, the best improvement effect can be achieved. Therefore, this study's findings can serve as a reference guide for future development of microservice architecture.Comment: in Chinese languag

    Ab initio Study of Luminescence in Ce-doped Lu2_2SiO5_5: The Role of Oxygen Vacancies on Emission Color and Thermal Quenching Behavior

    Full text link
    We study from first principles the luminescence of Lu2_2SiO5_5:Ce3+^{3+} (LSO:Ce), a scintillator widely used in medical imaging applications, and establish the crucial role of oxygen vacancies (VO_O) in the generated spectrum. The excitation energy, emission energy and Stokes shift of its luminescent centers are simulated through a constrained density-functional theory method coupled with a Ξ”{\Delta}SCF analysis of total energies, and compared with experimental spectra. We show that the high-energy emission band comes from a single Ce-based luminescent center, while the large experimental spread of the low-energy emission band originates from a whole set of different Ce-VO_O complexes together with the other Ce-based luminescent center. Further, the luminescence thermal quenching behavior is analyzed. The 4fβˆ’5d4f-5d crossover mechanism is found to be very unlikely, with a large crossing energy barrier (Efd_{fd}) in the one-dimensional model. The alternative mechanism usually considered, namely the electron auto-ionization, is also shown to be unlikely. In this respect, we introduce a new methodology in which the time-consuming accurate computation of the band gap for such models is bypassed. We emphasize the usually overlooked role of the differing geometry relaxation in the excited neutral electronic state Ce3+,βˆ—^{3+,*} and in the ionized electronic state Ce4+^{4+}. The results indicate that such electron auto-ionization cannot explain the thermal stability difference between the high- and low-energy emission bands. Finally, a hole auto-ionization process is proposed as a plausible alternative. With the already well-established excited state characterization methodology, the approach to color center identification and thermal quenching analysis proposed here can be applied to other luminescent materials in the presence of intrinsic defects.Comment: 13 pages, 8 figures, accepted by Phys. Rev. Material
    • …
    corecore