503 research outputs found

    Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow

    Get PDF
    We propose a method to classify cardiac pathology based on a novel approach to extract image derived features to characterize the shape and motion of the heart. An original semi-supervised learning procedure, which makes efficient use of a large amount of non-segmented images and a small amount of images segmented manually by experts, is developed to generate pixel-wise apparent flow between two time points of a 2D+t cine MRI image sequence. Combining the apparent flow maps and cardiac segmentation masks, we obtain a local apparent flow corresponding to the 2D motion of myocardium and ventricular cavities. This leads to the generation of time series of the radius and thickness of myocardial segments to represent cardiac motion. These time series of motion features are reliable and explainable characteristics of pathological cardiac motion. Furthermore, they are combined with shape-related features to classify cardiac pathologies. Using only nine feature values as input, we propose an explainable, simple and flexible model for pathology classification. On ACDC training set and testing set, the model achieves 95% and 94% respectively as classification accuracy. Its performance is hence comparable to that of the state-of-the-art. Comparison with various other models is performed to outline some advantages of our model

    Ten simple rules for reporting voxel-based morphometry studies

    Get PDF
    Voxel-based morphometry [Ashburner, J. and Friston, K.J., 2000. Voxel-based morphometry—the methods. NeuroImage 11(6 Pt 1), 805–821] is a commonly used tool for studying patterns of brain change in development or disease and neuroanatomical correlates of subject characteristics. In performing a VBM study, many methodological options are available; if the study is to be easily interpretable and repeatable, the processing steps and decisions must be clearly described. Similarly, unusual methods and parameter choices should be justified in order to aid readers in judging the importance of such options or in comparing the work with other studies. This editorial suggests core principles that should be followed and information that should be included when reporting a VBM study in order to make it transparent, replicable and useful

    AutoFuse: Automatic Fusion Networks for Deformable Medical Image Registration

    Full text link
    Deformable image registration aims to find a dense non-linear spatial correspondence between a pair of images, which is a crucial step for many medical tasks such as tumor growth monitoring and population analysis. Recently, Deep Neural Networks (DNNs) have been widely recognized for their ability to perform fast end-to-end registration. However, DNN-based registration needs to explore the spatial information of each image and fuse this information to characterize spatial correspondence. This raises an essential question: what is the optimal fusion strategy to characterize spatial correspondence? Existing fusion strategies (e.g., early fusion, late fusion) were empirically designed to fuse information by manually defined prior knowledge, which inevitably constrains the registration performance within the limits of empirical designs. In this study, we depart from existing empirically-designed fusion strategies and develop a data-driven fusion strategy for deformable image registration. To achieve this, we propose an Automatic Fusion network (AutoFuse) that provides flexibility to fuse information at many potential locations within the network. A Fusion Gate (FG) module is also proposed to control how to fuse information at each potential network location based on training data. Our AutoFuse can automatically optimize its fusion strategy during training and can be generalizable to both unsupervised registration (without any labels) and semi-supervised registration (with weak labels provided for partial training data). Extensive experiments on two well-benchmarked medical registration tasks (inter- and intra-patient registration) with eight public datasets show that our AutoFuse outperforms state-of-the-art unsupervised and semi-supervised registration methods.Comment: Under Revie

    Uncertainty quantification in non-rigid image registration via stochastic gradient Markov chain Monte Carlo

    Get PDF
    We develop a new Bayesian model for non-rigid registration of three-dimensional medical images, with a focus on uncertainty quantification. Probabilistic registration of large images with calibrated uncertainty estimates is difficult for both computational and modelling reasons. To address the computational issues, we explore connections between the Markov chain Monte Carlo by backpropagation and the variational inference by backpropagation frameworks, in order to efficiently draw samples from the posterior distribution of transformation parameters. To address the modelling issues, we formulate a Bayesian model for image registration that overcomes the existing barriers when using a dense, high-dimensional, and diffeomorphic transformation parametrisation. This results in improved calibration of uncertainty estimates. We compare the model in terms of both image registration accuracy and uncertainty quantification to VoxelMorph, a state-of-the-art image registration model based on deep learning

    Diffeomorphic image registration with applications to deformation modelling between multiple data sets

    Get PDF
    Over last years, the diffeomorphic image registration algorithms have been successfully introduced into the field of the medical image analysis. At the same time, the particular usability of these techniques, in majority derived from the solid mathematical background, has been only quantitatively explored for the limited applications such as longitudinal studies on treatment quality, or diseases progression. The thesis considers the deformable image registration algorithms, seeking out those that maintain the medical correctness of the estimated dense deformation fields in terms of the preservation of the object and its neighbourhood topology, offer the reasonable computational complexity to satisfy time restrictions coming from the potential applications, and are able to cope with low quality data typically encountered in Adaptive Radiotherapy (ART). The research has led to the main emphasis being laid on the diffeomorphic image registration to achieve one-to-one mapping between images. This involves introduction of the log-domain parameterisation of the deformation field by its approximation via a stationary velocity field. A quantitative and qualitative examination of existing and newly proposed algorithms for pairwise deformable image registration presented in this thesis, shows that the log-Euclidean parameterisation can be successfully utilised in the biomedical applications. Although algorithms utilising the log-domain parameterisation have theoretical justification for maintaining diffeomorphism, in general, the deformation fields produced by them have similar properties as these estimated by classical methods. Having this in mind, the best compromise in terms of the quality of the deformation fields has been found for the consistent image registration framework. The experimental results suggest also that the image registration with the symmetrical warping of the input images outperforms the classical approaches, and simultaneously can be easily introduced to most known algorithms. Furthermore, the log-domain implicit group-wise image registration is proposed. By linking the various sets of images related to the different subjects, the proposed image registration approach establishes a common subject space and between-subject correspondences therein. Although the correspondences between groups of images can be found by performing the classic image registration, the reference image selection (not required in the proposed implementation), may lead to a biased mean image being estimated and the corresponding common subject space not adequate to represent the general properties of the data sets. The approaches to diffeomorphic image registration have been also utilised as the principal elements for estimating the movements of the organs in the pelvic area based on the dense deformation field prediction system driven by the partial information coming from the specific type of the measurements parameterised using the implicit surface representation, and recognising facial expressions where the stationary velocity fields are used as the facial expression descriptors. Both applications have been extensively evaluated based on the real representative data sets of three-dimensional volumes and two-dimensional images, and the obtained results indicate the practical usability of the proposed techniques

    Image computing tools for the investigation of the neurological effects of preterm birth and corticosteroid administration

    Get PDF
    In this thesis we present a range of computational tools for medical imaging purposes within two main research projects. The first one is a methodological project oriented towards the improvement of the performance of a numerical computation utilised in diffeomorphic image registration. The second research project is a pre-clinical study aimed at the investigation of the effects of antenatal corticosteroids in a preterm rabbit animal model. In the first part we addressed the problem of integrating stationary velocity fields. This mathematical challenge had originated with early studies in fluid dynamics and had been subsequently mathematically formalised in the Lie group theory. Given a tangent velocity field defined in the tridimensional space as in input, the goal is to compute the position of the particles to which the velocity field is applied. This computation, also called numerical Lie exponential, is a fundamental component of several medical image registration algorithm based on diffeomorphisms, i.e. bijective differentiable maps with differentiable inverse. It is as well a widely utilised tool in computational anatomy to quantify the differences between two anatomical shapes measuring the parameters of the transformation that belongs to a metric vector space. The resulting new class of algorithms introduced in this thesis was created combining the known scaling and squaring algorithm with a class of numerical integrators aimed to solve systems of ordinary differential equations called exponential integrators. The introduced scaling and squaring based approximated exponential integrator algorithm have improved the computational time and accuracy respect to the state- of-the-art methods. The second part of the research is a pre-clinical trial carried forward in collab- oration with the Department of Development and Regeneration, Woman and Child Cluster at the KU Leuven University. The clinical research question is related to the understanding of the possible negative effects of administering antenatal cor- ticosteroids for preterm birth. To tackle this problem we designed and started a pre-clinical study using a New Zealand perinatal rabbit model. In this part of the research I was involved in the research team to provide the tools to automatise the data analysis and to eliminate the time consuming and non reproducible manual segmentation step. The main result of this collaboration is the creation of the first multi-modal multi-atlas for the newborn rabbit brain. This is embedded in a segmentation propagation and label fusion algorithm at the core of the proposed open-sourced automatic pipeline, having as input the native scanner format and as output the main MRI readouts, such as volume, fractional anisotropy and mean diffusivity

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    A Survey on Deep Learning in Medical Image Registration: New Technologies, Uncertainty, Evaluation Metrics, and Beyond

    Full text link
    Over the past decade, deep learning technologies have greatly advanced the field of medical image registration. The initial developments, such as ResNet-based and U-Net-based networks, laid the groundwork for deep learning-driven image registration. Subsequent progress has been made in various aspects of deep learning-based registration, including similarity measures, deformation regularizations, and uncertainty estimation. These advancements have not only enriched the field of deformable image registration but have also facilitated its application in a wide range of tasks, including atlas construction, multi-atlas segmentation, motion estimation, and 2D-3D registration. In this paper, we present a comprehensive overview of the most recent advancements in deep learning-based image registration. We begin with a concise introduction to the core concepts of deep learning-based image registration. Then, we delve into innovative network architectures, loss functions specific to registration, and methods for estimating registration uncertainty. Additionally, this paper explores appropriate evaluation metrics for assessing the performance of deep learning models in registration tasks. Finally, we highlight the practical applications of these novel techniques in medical imaging and discuss the future prospects of deep learning-based image registration

    Statistical Medial Model dor Cardiac Segmentation and Morphometry

    Get PDF
    In biomedical image analysis, shape information can be utilized for many purposes. For example, irregular shape features can help identify diseases; shape features can help match different instances of anatomical structures for statistical comparison; and prior knowledge of the mean and possible variation of an anatomical structure\u27s shape can help segment a new example of this structure in noisy, low-contrast images. A good shape representation helps to improve the performance of the above techniques. The overall goal of the proposed research is to develop and evaluate methods for representing shapes of anatomical structures. The medial model is a shape representation method that models a 3D object by explicitly defining its skeleton (medial axis) and deriving the object\u27s boundary via inverse-skeletonization . This model represents shape compactly, and naturally expresses descriptive global shape features like thickening , bending , and elongation . However, its application in biomedical image analysis has been limited, and it has not yet been applied to the heart, which has a complex shape. In this thesis, I focus on developing efficient methods to construct the medial model, and apply it to solve biomedical image analysis problems. I propose a new 3D medial model which can be efficiently applied to complex shapes. The proposed medial model closely approximates the medial geometry along medial edge curves and medial branching curves by soft-penalty optimization and local correction. I further develop a scheme to perform model-based segmentation using a statistical medial model which incorporates prior shape and appearance information. The proposed medial models are applied to a series of image analysis tasks. The 2D medial model is applied to the corpus callosum which results in an improved alignment of the patterns of commissural connectivity compared to a volumetric registration method. The 3D medial model is used to describe the myocardium of the left and right ventricles, which provides detailed thickness maps characterizing different disease states. The model-based myocardium segmentation scheme is tested in a heterogeneous adult MRI dataset. Our segmentation experiments demonstrate that the statistical medial model can accurately segment the ventricular myocardium and provide useful parameters to characterize heart function

    Image Registration of Lung CT Scans for Monitoring Disease Progression

    Get PDF
    • …
    corecore