9 research outputs found

    Diffeomorphic Metric Mapping and Probabilistic Atlas Generation of Hybrid Diffusion Imaging based on BFOR Signal Basis

    Full text link
    We propose a large deformation diffeomorphic metric mapping algorithm to align multiple b-value diffusion weighted imaging (mDWI) data, specifically acquired via hybrid diffusion imaging (HYDI), denoted as LDDMM-HYDI. We then propose a Bayesian model for estimating the white matter atlas from HYDIs. We adopt the work given in Hosseinbor et al. (2012) and represent the q-space diffusion signal with the Bessel Fourier orientation reconstruction (BFOR) signal basis. The BFOR framework provides the representation of mDWI in the q-space and thus reduces memory requirement. In addition, since the BFOR signal basis is orthonormal, the L2 norm that quantifies the differences in the q-space signals of any two mDWI datasets can be easily computed as the sum of the squared differences in the BFOR expansion coefficients. In this work, we show that the reorientation of the qq-space signal due to spatial transformation can be easily defined on the BFOR signal basis. We incorporate the BFOR signal basis into the LDDMM framework and derive the gradient descent algorithm for LDDMM-HYDI with explicit orientation optimization. Additionally, we extend the previous Bayesian atlas estimation framework for scalar-valued images to HYDIs and derive the expectation-maximization algorithm for solving the HYDI atlas estimation problem. Using real HYDI datasets, we show the Bayesian model generates the white matter atlas with anatomical details. Moreover, we show that it is important to consider the variation of mDWI reorientation due to a small change in diffeomorphic transformation in the LDDMM-HYDI optimization and to incorporate the full information of HYDI for aligning mDWI

    Anatomical Image Series Analysis in the Computational Anatomy Random Orbit Model

    Get PDF
    Serially acquired medical imagery plays an important role in the computational study of human anatomy. In this work, we describe the development of novel algorithms set in the large deformation diffeomorphic metric mapping framework for analyzing serially acquired imagery of two general types: spatial image series and temporal image series. In the former case, a critical step in the analysis of neural connectivity from serially-sectioned brain histology data is the reconstruction of spatially distorted image volumes and registration into a common coordinate space. In the latter case, computational methods are required for building low dimensional representations of the infinite dimensional shape space standard to computational anatomy. Here, we review the vast body of work related to volume reconstruction and atlas-mapping of serially-sectioned data as well as diffeomorphic methods for longitudinal data and we position our work relative to these in the context of the computational anatomy random orbit model. We show how these two problems are embedded as extensions to the classic random orbit model and use it to both enforce diffeomorphic conditions and analyze the distance metric associated to diffeomorphisms. We apply our new algorithms to histology and MRI datasets to study the structure, connectivity, and pathological degeneration of the brain

    Generative-Discriminative Low Rank Decomposition for Medical Imaging Applications

    Get PDF
    In this thesis, we propose a method that can be used to extract biomarkers from medical images toward early diagnosis of abnormalities. Surge of demand for biomarkers and availability of medical images in the recent years call for accurate, repeatable, and interpretable approaches for extracting meaningful imaging features. However, extracting such information from medical images is a challenging task because the number of pixels (voxels) in a typical image is in order of millions while even a large sample-size in medical image dataset does not usually exceed a few hundred. Nevertheless, depending on the nature of an abnormality, only a parsimonious subset of voxels is typically relevant to the disease; therefore various notions of sparsity are exploited in this thesis to improve the generalization performance of the prediction task. We propose a novel discriminative dimensionality reduction method that yields good classification performance on various datasets without compromising the clinical interpretability of the results. This is achieved by combining the modelling strength of generative learning framework and the classification performance of discriminative learning paradigm. Clinical interpretability can be viewed as an additional measure of evaluation and is also helpful in designing methods that account for the clinical prior such as association of certain areas in a brain to a particular cognitive task or connectivity of some brain regions via neural fibres. We formulate our method as a large-scale optimization problem to solve a constrained matrix factorization. Finding an optimal solution of the large-scale matrix factorization renders off-the-shelf solver computationally prohibitive; therefore, we designed an efficient algorithm based on the proximal method to address the computational bottle-neck of the optimization problem. Our formulation is readily extended for different scenarios such as cases where a large cohort of subjects has uncertain or no class labels (semi-supervised learning) or a case where each subject has a battery of imaging channels (multi-channel), \etc. We show that by using various notions of sparsity as feasible sets of the optimization problem, we can encode different forms of prior knowledge ranging from brain parcellation to brain connectivity

    Consistance des statistiques dans les espaces quotients de dimension infinie

    Get PDF
    In computational anatomy, organ shapes are assumed to be deformation of a common template. The data can be organ images but also organ surfaces, and the deformations are often assumed to be diffeomorphisms. In order to estimate the template, one often uses the max-max algorithm which minimizes, among all the prospective templates, the sum of the squared distance after registration between the data and a prospective template. Registration is here the step of the algorithm which finds the best deformation between two shapes. The goal of this thesis is to study this template estimation method from a mathematically point of view. We prove in particular that this algorithm is inconsistent due to the noise. This means that even with an infinite number of data, and with a perfect minimization algorithm, one estimates the original template with an error. In order to prove inconsistency, we formalize the template estimation: deformations are assumed to be random elements of a group which acts on the space of observations. Besides, the studied algorithm is interpreted as the computation of the FrĂ©chet mean in the space of observations quotiented by the group of deformations. In this thesis, we prove that the inconsistency comes from the contraction of the distance in the quotient space with respect to the distance in the space of observations. Besides, we obtained a Taylor expansion of the consistency bias with respect to the noise level. As a consequence, the inconsistency is unavoidable when the noise level is high.En anatomie computationnelle, on suppose que les formes d'organes sont issues des dĂ©formations d'un template commun. Les donnĂ©es peuvent ĂȘtre des images ou des surfaces d'organes, les dĂ©formations peuvent ĂȘtre des diffĂ©omorphismes. Pour estimer le template, on utilise souvent un algorithme appelĂ© «max-max» qui minimise parmi tous les candidats, la somme des carrĂ©es des distances aprĂšs recalage entre les donnĂ©es et le template candidat. Le recalage est l'Ă©tape de l'algorithme qui trouve la meilleure dĂ©formation pour passer d'une forme Ă  une autre. Le but de cette thĂšse est d'Ă©tudier cet algorithme max-max d'un point de vue mathĂ©matique. En particulier, on prouve que cet algorithme est inconsistant Ă  cause du bruit. Cela signifie que mĂȘme avec un nombre infini de donnĂ©es et avec un algorithme de minimisation parfait, on estime le template original avec une erreur non nulle. Pour prouver l'inconsistance, on formalise l'estimation du template. On suppose que les dĂ©formations sont des Ă©lĂ©ments alĂ©atoires d'un groupe qui agit sur l'espace des observations. L'algorithme Ă©tudiĂ© est interprĂ©tĂ© comme le calcul de la moyenne de FrĂ©chet dans l'espace des observations quotientĂ© par le groupe des dĂ©formations. Dans cette thĂšse, on prouve que l'inconsistance est dĂ» Ă  la contraction de la distance quotient par rapport Ă  la distance dans l'espace des observations. De plus, on obtient un Ă©quivalent de biais de consistance en fonction du niveau de bruit. Ainsi, l'inconsistance est inĂ©vitable quand le niveau de bruit est suffisamment grand

    The Fifteenth Marcel Grossmann Meeting

    Get PDF
    The three volumes of the proceedings of MG15 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 40 morning plenary talks over 6 days, 5 evening popular talks and nearly 100 parallel sessions on 71 topics spread over 4 afternoons. These proceedings are a representative sample of the very many oral and poster presentations made at the meeting.Part A contains plenary and review articles and the contributions from some parallel sessions, while Parts B and C consist of those from the remaining parallel sessions. The contents range from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. Parallel sessions touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity

    The Fifteenth Marcel Grossmann Meeting

    Get PDF
    The three volumes of the proceedings of MG15 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 40 morning plenary talks over 6 days, 5 evening popular talks and nearly 100 parallel sessions on 71 topics spread over 4 afternoons. These proceedings are a representative sample of the very many oral and poster presentations made at the meeting.Part A contains plenary and review articles and the contributions from some parallel sessions, while Parts B and C consist of those from the remaining parallel sessions. The contents range from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. Parallel sessions touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity

    Three Risky Decades: A Time for Econophysics?

    Get PDF
    Our Special Issue we publish at a turning point, which we have not dealt with since World War II. The interconnected long-term global shocks such as the coronavirus pandemic, the war in Ukraine, and catastrophic climate change have imposed significant humanitary, socio-economic, political, and environmental restrictions on the globalization process and all aspects of economic and social life including the existence of individual people. The planet is trapped—the current situation seems to be the prelude to an apocalypse whose long-term effects we will have for decades. Therefore, it urgently requires a concept of the planet's survival to be built—only on this basis can the conditions for its development be created. The Special Issue gives evidence of the state of econophysics before the current situation. Therefore, it can provide excellent econophysics or an inter-and cross-disciplinary starting point of a rational approach to a new era

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore