60 research outputs found

    Microdevices and Microsystems for Cell Manipulation

    Get PDF
    Microfabricated devices and systems capable of micromanipulation are well-suited for the manipulation of cells. These technologies are capable of a variety of functions, including cell trapping, cell sorting, cell culturing, and cell surgery, often at single-cell or sub-cellular resolution. These functionalities are achieved through a variety of mechanisms, including mechanical, electrical, magnetic, optical, and thermal forces. The operations that these microdevices and microsystems enable are relevant to many areas of biomedical research, including tissue engineering, cellular therapeutics, drug discovery, and diagnostics. This Special Issue will highlight recent advances in the field of cellular manipulation. Technologies capable of parallel single-cell manipulation are of special interest

    Microfluidic devices for cell cultivation and proliferation

    Full text link
    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined

    MatriGrid® based biological morphologies: tools for 3D cell culturing

    Get PDF
    Recent trends in 3D cell culturing has placed organotypic tissue models at another level. Now, not only is the microenvironment at the cynosure of this research, but rather, microscopic geometrical parameters are also decisive for mimicking a tissue model. Over the years, technologies such as micromachining, 3D printing, and hydrogels are making the foundation of this field. However, mimicking the topography of a particular tissue-relevant substrate can be achieved relatively simply with so-called template or morphology transfer techniques. Over the last 15 years, in one such research venture, we have been investigating a micro thermoforming technique as a facile tool for generating bioinspired topographies. We call them MatriGrid ® s. In this research account, we summarize our learning outcome from this technique in terms of the influence of 3D micro morphologies on different cell cultures that we have tested in our laboratory. An integral part of this research is the evolution of unavoidable aspects such as possible label-free sensing and fluidic automatization. The development in the research field is also documented in this account

    Heart on a chip: Micro-nanofabrication and microfluidics steering the future of cardiac tissue engineering

    Get PDF
    The evolution of micro and nanofabrication approaches significantly spurred the advancements of cardiac tissue engineering over the last decades. Engineering in the micro and nanoscale allows for the rebuilding of heart tissues using cardiomyocytes. The breakthrough of human induced pluripotent stem cells expanded this field rendering the development of human tissues from adult cells possible, thus avoiding the ethical issues of the usage of embryonic stem cells but also creating patient-specific human engineered tissues. In the case of the heart, the combination of cardiomyocytes derived from human induced pluripotent stem cells and micro/nano engineering devices gave rise to new therapeutic approaches of cardiac diseases. In this review, we survey the micro and nanofabrication methods used for cardiac tissue engineering, ranging from clean room-based patterning (such as photolithography and plasma etching) to electrospinning and additive manufacturing. Subsequently, we report on the main approaches of microfluidics for cardiac culture systems, the so-called “Heart on a Chip”, and we assess their efficacy for future development of cardiac disease modeling and drug screening platforms

    Design, Fabrication, Testing of CNT Based ISFET and Characterization of Nano/Bio Materials Using AFM

    Get PDF
    A combination of Carbon Nanotubes (CNTs) and Ion Selective Field Effect Transistor (ISFET) is designed and experimentally verified in order to develop the next generation ion concentration sensing system. Micro Electro-Mechanical System (MEMS) fabrication techniques, such as photolithography, diffusion, evaporation, lift-off, packaging, etc., are required in the fabrication of the CNT-ISFET structure on p-type silicon wafers. In addition, Atomic Force Microscopy (AFM) based surface nanomachining is investigated and used for creating nanochannels on silicon surfaces. Since AFM based nanomanipulation and nanomachining is highly controllable, nanochannels are precisely scratched in the area between the source and drain of the FET where the inversion layer is after the ISFET is activated. Thus, a bundle of CNTs are able to be aligned inside a single nanochannel by Dielectrophoresis (DEP) and the drain current is improved greatly due to CNTs` remarkable and unique electrical properties, for example, high current carrying capacity. ISFET structures with or without CNTs are fabricated and tested with different pH solutions. Besides the CNT-ISFET pH sensing system, this dissertation also presents novel AFM-based nanotechnology for learning the properties of chemical or biomedical samples in micro or nano level. Dimensional and mechanical property behaviors of Vertically Aligned Carbon Nanofibers (VACNFs) are studied after temperature and humidity treatment using AFM. Furthermore, mechanical property testing of biomedical samples, such as microbubbles and engineered soft tissues, using AFM based nanoindentation is introduced, and the methodology is of great directional value in the area

    Cell Culture on MEMS Platforms: A Review

    Get PDF
    Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bioincompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bioincompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented.Institute of Bioengineering and Nanotechnology (Singapore)Singapore. Biomedical Research CouncilSingapore. Agency for Science, Technology and ResearchSingapore. Agency for Science, Technology and Research (R-185-001-045-305)Singapore. Ministry of EducationSingapore. Ministry of Education (Grant R-185- 000-135-112)Singapore. National Medical Research CouncilSingapore. National Medical Research Council (Grant R-185-000-099-213)Jassen Cilag (Firm)Singapore-MIT Alliance (Computational and Systems Biology Flagship Project)Global Enterprise for Micro-Mechanics and Molecular Medicin

    A 3D cell-culture and gradient-generator microfluidic device

    Full text link

    Micro/Nanofluidic Devices for Single Cell Analysis

    Get PDF

    Non-volatile liquid-film-embedded microfluidic valve for microscopic evaporation control and contactless bio-fluid delivery applications

    Get PDF
    Quick evaporation speed of microfluids can cause many unexpected problems and failures in various microfluidic devices and systems. In this dissertation, a new evaporation speed controlling method is demonstrated using a thin liquid-film based microfluidic valve. Microfluidic droplet ejectors were designed, fabricated and integrated with the liquid-film based microfluidic valve. The thin liquid film with nonvolatility and immiscibility exhibited excellent microfluidic valve functionality without any stiction problem between valve components, and provided a very effective evaporation protection barrier for the microfluids in the device. Successful evaporation control by the liquid-film-embedded (LiFE) microfluidic valve has been demonstrated. In addition, guided actuation of the microfluidic valve along predefined paths was successfully achieved using newly developed oil-repellent surfaces, which were later used for developing ‘virtual walls’ for confining low surface tension liquids within predefined areas. Moreover, bioinspired slippery surfaces for aiding the microfluidic valve along the ejector surface have also been developed. These slippery surfaces were evaluated for their effectiveness in reducing microfluidic valve driving voltages. Finally, a sliding liquid drop (SLID) shutter technique has been developed for a normally closed functionality with aid from nanostructures. The SLID shutter resolves many issues found in the previous LiFE microfluidic valve. Smooth and successful printing results of highly volatile bio-fluids have been demonstrated using the SLID shutter technique. I envision that these demonstrated techniques and developed tools have immense potential in various microfluidic applications

    Self-powered mobile sensor for in-pipe potable water quality monitoring

    Get PDF
    Traditional stationary sensors for potable-water quality monitoring in a wireless sensor network format allow for continuous data collection and transfer. These stationary sensors have played a key role in reporting contamination events in order to secure public health. We are developing a self-powered mobile sensor that can move with the water flow, allowing real-time detection of contamination in water distribution pipes, with a higher temporal resolution. Functionality of the mobile sensor was tested for detecting and monitoring pH, Ca2+, Mg2+, HCO3-/CO32-, NH4+, and Clions. Moreover, energy harvest and wireless data transmission capabilities are being designed for the mobile sensor
    corecore