417 research outputs found

    Calibration of planetary brightness temperature spectra at near-millimeter and submillimeter wavelengths with a Fourier-transform spectrometer

    Get PDF
    A medium-resolution Fourier-transform spectrometer for ground-based observation of astronomical sources at near-millimeter and submillimeter wavelengths is described. The steps involved in measuring and calibrating astronomical spectra are elaborated. The spectrometer is well suited to planetary spectroscopy, and initial measurements of the intrinsic brightness temperature spectra of Uranus and Neptune at wavelengths of 1.0 to 1.5 mm are presented

    NIKA: A millimeter-wave kinetic inductance camera

    Get PDF
    Current generation millimeter wavelength detectors suffer from scaling limits imposed by complex cryogenic readout electronics. To circumvent this it is imperative to investigate technologies that intrinsically incorporate strong multiplexing. One possible solution is the kinetic inductance detector (KID). In order to assess the potential of this nascent technology, a prototype instrument optimized for the 2 mm atmospheric window was constructed. Known as the N\'eel IRAM KIDs Array (NIKA), it was recently tested at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. The measurement resulted in the imaging of a number of sources, including planets, quasars, and galaxies. The images for Mars, radio star MWC349, quasar 3C345, and galaxy M87 are presented. From these results, the optical NEP was calculated to be around 1×10151 \times 10^{-15} W/ / Hz1/2^{1/2}. A factor of 10 improvement is expected to be readily feasible by improvements in the detector materials and reduction of performance-degrading spurious radiation.Comment: Accepted for publication in Astronomy & Astrophysic

    The Third International Symposium on Space Terahertz Technology: Symposium proceedings

    Get PDF
    Papers from the symposium are presented that are relevant to the generation, detection, and use of the terahertz spectral region for space astronomy and remote sensing of the Earth's upper atmosphere. The program included thirteen sessions covering a wide variety of topics including solid-state oscillators, power-combining techniques, mixers, harmonic multipliers, antennas and antenna arrays, submillimeter receivers, and measurement techniques

    The determination of cloud masses and dust characteristics from submillimetre thermal emission

    Get PDF
    The principles by which the dust and masses and total masses of interstellar clouds and certain characteristics of interstellar dust grains can be derived from observations of far infrared and submillimeter thermal emission are reviewed. To the extent possible, the discussion will be independent of particular grain models

    Review of 20 years of research on microwave and millimeter-wave lenses at “Instituto de Telecomunicações”

    Get PDF
    Starting from a challenge in the early 1990s to develop a highly shaped beam dielectric lens antenna for a pilot 150 Mb/s cellular mobile broadband system operating in the 60-GHz band, several new developments have been accomplished over more than 20 years at Instituto de Telecomunicações [1] in the areas of millimeter-wave shaped dielectric lens antennas and planar metamaterial lenses. We review here a few representative examples with numerical and experimental results, covering applications in mobile broadband communications, radiometry, satellite communications, multigigabit short-range communications, and sublambda near-field target detection.info:eu-repo/semantics/publishedVersio

    Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    Get PDF
    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. The goal of this investigation was to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres

    Millimeter-wave sensing of the environment: A bibliographic survey

    Get PDF
    This literature survey was conducted to examine the field of millimeter wave remote sensing of the environment and collect all relevant observations made in the atmospheric windows near 90, 140, and 230 GHz of ocean, terrain, man-made features, and the atmosphere. Over 170 articles and reports were examined; bibliographic references are provided for all and abstracts are quoted when available. Selected highlights were extracted from the pertinent articles

    Permittivity and permeability of epoxy-magnetite powder composites at microwave frequencies

    Full text link
    Radio, millimetre and sub-millimetre astronomy experiments as well as remote sensing applications often require castable absorbers with well known electromagnetic properties to design and realize calibration targets. In this context, we fabricated and characterized two samples using different ratios of two easily commercially available materials: epoxy (Stycast 2850FT) and magnetite (Fe3O4\mathrm{Fe_{3}O_{4}}) powder. We performed transmission and reflection measurements from 7 GHz up to 170 GHz with a VNA equipped with a series of standard horn antennas. Using an empirical model we analysed the data to extract complex permittivity and permeability from transmission data; then we used reflection data to validate the results. In this paper we present the sample fabrication procedure, analysis method, parameter extraction pipeline, and results for two samples with different epoxy-powder mass ratios.Comment: 7 pages, 18 figures, submitted to the Journal of Applied Physics (AIP

    A mems approach to submillimetre-wave frequency multiplier design

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN041423 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore