26 research outputs found

    Surface Roughness Measurements on the Western Greenland Ice Sheet

    Get PDF
    This report summarizes in situ observations of snow surface roughness in relatively benign regions of the western Greenland Ice Sheet. The data were collected in June and August, 1991, June 1992, June 1993 and June 1995. The observations were used to support the interpretation of airborne SAR and laser measurements as well as ERS-1 and JERS-1 spaceborne SAR observations. Surface characterization measurements complemented other, coincident, in situ experiments including C and Ku band surface scatterometer observations, ultra-wideband (operations from 0.5 to 18 GHz) scatterometer measurements, large scale surface topography measured by leveling, and the deployment of radar corner reflectors. This report focuses on snow-surface roughness measurements, both quantitative and anecdotal. Quantitative surface roughness was measured with a large, 1 m long comb gauge and with hand-held comb gauges. Included in the report are qualitative observations of peak-to-peak surface roughness which were frequently commented upon in field notebooks. Also included are numerous photographs. Selecting type areas for measuring roughness was challenging because of the number of surface morphologies distributed in each study areas. A severe limitation of the data is likely to be the short length of the roughness measurements. Sampling length may lead to biased estimates of correlation length. Additional measurements were made of the near surface firn by excavating 1-2 m deep pits. These observations included firn density, grain size, grain shape, temperature, and stratigraphy. 10 m or deeper firn cores were collected from a few sites and analyzed for density, grain size and shape. Surface roughness was frequently measured on ice layers and other inclusions observed in the firn column and some of these data are included for comparison to the snow-surface properties

    Bulk and Surface Radio-Frequency Response of Ice

    Get PDF
    The flux and cross section of high energy neutrinos is an active area of research. Due to the expected low flux and cross section, interactions are rare and direct detection is ruled out. Large detector volumes with detection signals that can be observed from far away represent a reasonable and economical way to combat this problem. A currently popular detection strategy is to use a large, dense medium -- such as ice -- for the detector volume and radio antennas as the detectors. These radio antennas are sensitive to Cherenkov radiation produced via the Askaryan effect when a neutrino interacts in the detector volume. To determine the absolute amplitude of radio frequency (RF) emissions from high energy physics processes observed by Antarctic detectors, the bulk attenuation and surface reflection properties of Antarctic ice must be estimated. Neutrino experiments that intend to use polar ice as the detector volume must consider the depth-dependent attenuation length of the ice. Airborne experiments, such as the balloon-borne ANtarctic Impulsive Transient Antenna (ANITA), additionally need to consider the effects of the ice-air transition for both refracted signals produced by neutrino collisions in ice and reflected signals generated by cosmic ray-induced extensive air showers (EAS). Combining radar depth sounding (RDS) data for the estimation of attenuation length with radar scatterometer measurements for the estimation of surface roughness, we seek to create Antarctica-wide attenuation models. Though models and estimates for attenuation and reflection are motivated by ANITA analysis, the methods and results should have general use for the treatment of radio frequency signals interacting with ice and similar media

    Snow backscatter in the 1-8 GHz region

    Get PDF
    The 1-8 GHz microwave active spectrometer system was used to measure the backscatter response of snow covered ground. The scattering coefficient was measured for all linear polarization combinations at angles of incidence between nadir and 70 deg. Ground truth data consisted of soil moisture, soil temperature profile, snow depth, snow temperature profile, and snow water equivalent. The radar sensitivity to snow water equivalent increased in magnitude with increasing frequency and was almost angle independent for angles of incidence higher than 30 deg, particularly at the higher frequencies. In the 50 deg to 70 deg angular range and in the 6 to 8 GHz frequency range, the sensitivity was typically between -0.4 dB/.1 g/sq cm and -0.5 dB/,1 g/sq cm, and the associated linear correlation coefficient had a magnitude of about 0.8

    Remote Sensing of Environmental Changes in Cold Regions

    Get PDF
    This Special Issue gathers papers reporting recent advances in the remote sensing of cold regions. It includes contributions presenting improvements in modeling microwave emissions from snow, assessment of satellite-based sea ice concentration products, satellite monitoring of ice jam and glacier lake outburst floods, satellite mapping of snow depth and soil freeze/thaw states, near-nadir interferometric imaging of surface water bodies, and remote sensing-based assessment of high arctic lake environment and vegetation recovery from wildfire disturbances in Alaska. A comprehensive review is presented to summarize the achievements, challenges, and opportunities of cold land remote sensing

    Microwave remote sensing of snowpacks

    Get PDF
    The interaction mechanisms responsible for the microwave backscattering and emission behavior of snow were investigated, and models were developed relating the backscattering coefficient (sigma) and apparent temperature (T) to the physical parameters of the snowpack. The microwave responses to snow wetness, snow water equivalent, snow surface roughness, and to diurnal variations were investigated. Snow wetness was shown to have an increasing effect with increasing frequency and angle of incidence for both active and passive cases. Increasing snow wetness was observed to decrease the magnitude sigma and increase T. Snow water equivalent was also observed to exhibit a significant influence sigma and T. Snow surface configuration (roughness) was observed to be significant only for wet snow surface conditions. Diurnal variations were as large as 15 dB for sigma at 35 GHz and 120 K for T at 37 GHz. Simple models for sigma and T of a snowpack scene were developed in terms of the most significant ground-truth parameters. The coefficients for these models were then evaluated; the fits to the sigma and T measurements were generally good. Finally, areas of needed additional observations were outlined and experiments were specified to further the understanding of the microwave-snowpack interaction mechanisms

    Remote Sensing Observations of Tundra Snow with Ku- and X-band Radar

    Get PDF
    Seasonal patterns of snow accumulation in the Northern Hemisphere are changing in response to variations in Arctic climate. These changes have the potential to influence global climate, regional hydrology, and sensitive ecosystems as they become more pronounced. To refine our understanding of the role of snow in the Earth system, improved methods to characterize global changes in snow extent and mass are needed. Current space-borne observations and ground-based measurement networks lack the spatial resolution to characterize changes in volumetric snow properties at the scale of ground observed variation. Recently, radar has emerged as a potential complement to existing observation methods with demonstrated sensitivity to snow volume at high spatial resolutions (< 200 m). In 2009, this potential was recognized by the proposed European Space Agency Earth Explorer mission, the Cold Regions High Resolution Hydrology Observatory (CoReH2O); a satellite based dual frequency (17.2 and 9.6 GHz) radar for observation of cryospheric variables including snow water equivalent (SWE). Despite increasing international attention, snow-radar interactions specific to many snow cover types remain unevaluated at 17.2 or 9.6 GHz, including those common to the Canadian tundra. This thesis aimed to use field-based experimentation to close gaps in knowledge regarding snow-microwave interaction and to improve our understanding of how these interactions could be exploited to retrieve snow properties in tundra environments. Between September 2009 and March 2011, a pair of multi-objective field campaigns were conducted in Churchill, Manitoba, Canada to collect snow, ice, and radar measurements in a number of unique sub-arctic environments. Three distinct experiments were undertaken to characterize and evaluate snow-radar response using novel seasonal, spatial, and destructive sampling methods in previously untested terrestrial tundra environments. Common to each experiment was the deployment of a sled-mounted dual-frequency (17.2 and 9.6 GHz) scatterometer system known as UW-Scat. This adaptable ground-based radar system was used to collect backscatter measurements across a range of representative tundra snow conditions at remote terrestrial sites. The assembled set of measurements provide an extensive database from which to evaluate the influence of seasonal processes of snow accumulation and metamorphosis on radar response. Several advancements to our understanding of snow-radar interaction were made in this thesis. First, proof-of-concept experiments were used to establish seasonal and spatial observation protocols for ground-based evaluation. These initial experiments identified the presence of frequency dependent sensitivity to evolving snow properties in terrestrial environments. Expanding upon the preliminary experiments, a seasonal observation protocol was used to demonstrate for the first time Ku-band and X-band sensitivity to evolving snow properties at a coastal tundra observation site. Over a 5 month period, 13 discrete scatterometer observations were collected at an undisturbed snow target where Ku-band measurements were shown to hold strong sensitivity to increasing snow depth and water equivalent. Analysis of longer wavelength X-band measurements was complicated by soil response not easily separable from the target snow signal. Definitive evidence of snow volume scattering was shown by removing the snowpack from the field of view which resulted in a significant reduction in backscatter at both frequencies. An additional set of distributed snow covered tundra targets were evaluated to increase knowledge of spatiotemporal Ku-band interactions. In this experiment strong sensitivities to increasing depth and SWE were again demonstrated. To further evaluate the influence of tundra snow variability, detailed characterization of snow stratigraphy was completed within the sensor field of view and compared against collocated backscatter response. These experiments demonstrated Ku-band sensitivity to changes in tundra snow properties observed over short distances. A contrasting homogeneous snowpack showed a reduction in variation of the radar signal in comparison to a highly variable open tundra site. Overall, the results of this thesis support the single frequency Ku-band (17.2 GHz) retrieval of shallow tundra snow properties and encourage further study of X-band interactions to aid in decomposition of the desired snow volume signal.4 month

    Spaceborne synthetic aperture radar: Current status and future directions. A report to the Committee on Earth Sciences, Space Studies Board, National Research Council

    Get PDF
    This report provides a context in which questions put forth by NASA's Office of Mission to Planet Earth (OMPTE) regarding the next steps in spaceborne synthetic aperture radar (SAR) science and technology can be addressed. It summarizes the state-of-the-art in theory, experimental design, technology, data analysis, and utilization of SAR data for studies of the Earth, and describes potential new applications. The report is divided into five science chapters and a technology assessment. The chapters summarize the value of existing SAR data and currently planned SAR systems, and identify gaps in observational capabilities needing to be filled to address the scientific questions. Cases where SAR provides complementary data to other (non-SAR) measurement techniques are also described. The chapter on technology assessment outlines SAR technology development which is critical not only to NASA's providing societally relevant geophysical parameters but to maintaining competitiveness in SAR technology, and promoting economic development

    Analyse de la modélisation de l'émission multi-fréquences micro-onde des sols et de la neige, incluant les croutes de glace à l'aide du modèle Microwave Emission Model of Layered Snowpacks (MEMLS).

    Get PDF
    Résumé : L'étude du couvert nival est essentielle afin de mieux comprendre les processus climatiques et hydrologiques. De plus, avec les changements climatiques observés dans l'hémisphère nord, des événements de dégel-regel ou de pluie hivernale sont de plus en plus courants et produisent des croutes de glace dans le couvert nival affectant les moeurs des communautés arctiques en plus de menacer la survie de la faune arctique. La télédétection micro-ondes passives (MOP) démontre un grand potentiel de caractérisation du couvert nival. Toutefois, a fin de bien comprendre les mesures satellitaires, une modélisation adéquate du signal est nécessaire. L'objectif principal de cette thèse est d'analyser le transfert radiatif (TR) MOP des sols, de la neige et de la glace a fin de mieux caractériser les propriétés géophysiques du couvert nival par télédétection. De plus, un indice de détection des croutes de glace par télédétection MOP a été développé. Pour ce faire, le modèle Microwave Emission Model of Layered Snowpacks (MEMLS) a été étudié et calibré afin de minimiser les erreurs des températures de brillance simulées en présences de croutes de glace. La première amélioration faite à la modélisation du TR MOP de la neige a été la caractérisation de la taille des grains de neige. Deux nouveaux instruments, utilisant la réflectance dans le proche infrarouge, ont été développés afin de mesurer la surface spécifique de la neige (SSA). Il a été démontré que la SSA est un paramètre plus précis et plus objectif pour caractériser la taille des grains de neige. Les deux instruments ont démontré une incertitude de 10% sur la mesure de la SSA. De plus, la SSA a été calibré pour la modélisation MOP a n de minimiser l'erreur sur la modélisation de la température de brillance. Il a été démontré qu'un facteur multiplicatif [phi] = 1.3 appliqué au paramètre de taille des grains de neige dans MEMLS, paramètre dérivé de la SSA, est nécessaire afin de minimiser l'erreur des simulations. La deuxième amélioration apportée à la modélisation du TR MOP a été l'estimation de l'émission du sol. Des mesures radiométriques MOP in-situ ainsi que des profils de températures de sols organiques arctiques gelés ont été acquis et caractérisés a fin de simuler l'émission MOP de ces sols. Des constantes diélectriques effectives à 10.7, 19 et 37 GHz ainsi qu'une rugosité de surface effective des sols ont été déterminés pour simuler l'émission des sols. Une erreur quadratique moyenne (RMSE) de 4.65 K entre les simulations et les mesures MOP a été obtenue. Suite à la calibration du TR MOP du sol et de la neige, un module de TR de la glace a été implémenté dans MEMLS. Avec ce nouveau module, il a été possible de démontré que l'approximation de Born améliorée, déjà implémenté dans MEMLS, pouvait être utilisé pour simuler des croutes de glace pure à condition que la couche de glace soit caractérisée par une densité de 917 kg m[indice supérieur _3] et une taille des grains de neige de 0 mm. Il a aussi été démontré que, pour des sites caractérisés par des croutes de glace, les températures de brillances simulées des couverts de neige avec des croutes de glace ayant les propriétés mesurées in-situ (RMSE=11.3 K), avaient une erreur similaire aux températures de brillances simulées des couverts de neige pour des sites n'ayant pas de croutes de glace (RMSE=11.5 K). Avec le modèle MEMLS validé pour la simulation du TR MOP du sol, de la neige et de la glace, un indice de détection des croutes de glace par télédétection MOP a été développé. Il a été démontré que le ratio de polarisation (PR) était très affecté par la présence de croutes de glace dans le couvert de neige. Avec des simulations des PR à 10.7, 19 et 37 GHz sur des sites mesurés à Churchill (Manitoba, Canada), il a été possible de déterminer des seuils entre la moyenne hivernale des PR et les valeurs des PR mesurés indiquant la présence de croutes de glace. Ces seuils ont été appliqués sur une série temporelle de PR de 33 hivers d'un pixel du Nunavik (Québec, Canada) où les conditions de sols étaient similaires à ceux observés à Churchill. Plusieurs croutes de glace ont été détectées depuis 1995 et les mêmes événements entre 2002 et 2009 que (Roy, 2014) ont été détectés. Avec une validation in-situ, il serait possible de confirmer ces événements de croutes de glace mais (Roy, 2014) a démontré que ces événements ne pouvaient être expliqués que par la présence de croutes de glace dans le couvert de neige. Ces mêmes seuils sur les PR ont été appliqués sur un pixel de l'Île Banks (Territoires du Nord-Ouest, Canada). L'événement répertorié par (Grenfell et Putkonen, 2008) a été détecté. Plusieurs autres événements de croutes de glace ont été détectés dans les années 1990 et 2000 avec ces seuils. Tous ces événements ont suivi une période où les températures de l'air étaient près ou supérieures au point de congélation et sont rapidement retombées sous le point de congélation. Les températures de l'air peuvent être utilisées pour confirmer la possibilité de présence de croutes de glace mais seul la validation in-situ peut définitivement confirmer la présence de ces croutes.Abstract : Snow cover studies are essential to better understand climatic and hydrologic processes. With recent climate change observed in the northern hemisphere, more frequent rain-on-snow and meltrefreeze events have been reported, which affect the habits of the northern comunities and the survival of arctique wildlife. Passive microwave remote sensing has proven to be a great tool to characterize the state of snow cover. Nonetheless, proper modeling of the microwave signal is needed in order to understand how the parameters of the snowpack affect the measured signal. The main objective of this study is to analyze the soil, snow and ice radiative transfer in order to better characterize snow cover properties and develop an ice lens detection index with satellite passive microwave brightness temperatures. To do so, the passive microwave radiative transfer modeling of the Microwave Emission Model of Layered Snowpacks (MEMLS) was improved in order to minimize the errors on the brightness temperature simulations in the presence of ice lenses. The first improvement to passive microwave radiative transfer modeling of snow made was the snow grain size parameterization. Two new instruments, based on short wave infrared reflectance to measure the snow specific surface area (SSA) were developed. This parameter was shown to be a more accurate and objective to characterize snow grain size. The instruments showed an uncertainty of 10% to measure the SSA of snow. Also, the SSA of snow was calibrated for passive microwave modeling in order to reduce the errors on the simulated brightness temperatures. It was showed that a correction factor of φ = 1.3 needed to be applied to the grain size parameter of MEMLS, obtain through the SSA measurements, to minimize the simulation error. The second improvement to passive microwave radiative transfer modeling was the estimation of passive microwave soil emission. In-situ microwave measurements and physical temperature profiles of frozen organic arctic soils were acquired and characterized to improve the modeling of the soil emission. Effective permittivities at 10.7, 19 and 37 GHz and effective surface roughness were determined for this type of soil and the soil brightness temperature simulations were obtain with a minimal root mean square error (RMSE) of 4.65K. With the snow grain size and soil contributions to the emitted brightness temperature optimized, it was then possible to implement a passive microwave radiative transfer module of ice into MEMLS. With this module, it was possible to demonstrate that the improved Born approximation already implemented in MEMLS was equivalent to simulating a pure ice lens when the density of the layer was set to 917 kg m−3 and the grain size to 0 mm. This study also showed that by simulating ice lenses within the snow with there measured properties, the RMSE of the simulations (RMSE= 11.3 K) was similar to the RMSE for simulations of snowpacks where no ice lenses were measured (only snow, RMSE= 11.5 K). With the validated MEMLS model for snowpacks with ice lenses, an ice index was created. It is shown here that the polarization ratio (PR) was strongly affected by the presence of ice lenses within the snowpack. With simulations of the PR at 10.7, 19 and 37 GHz from measured snowpack properties in Chucrhill (Manitoba, Canada), thresholds between the measured PR and the mean winter PR were determined to detect the presence of ice within the snowpack. These thresholds were applied to a timeseries of nearly 34 years for a pixel in Nunavik (Quebec, Canada) where the soil surface is similar to that of the Churchill site. Many ice lenses are detected since 1995 with these thresholds and the same events as Roy (2014) were detected. With in-situ validation, it would be possible to confirm the precision of these thresholds but Roy (2014) showed that these events can not be explained by anything else than the presence of an ice layer within the snowpack. The same thresholds were applied to a pixel on Banks island (North-West Territories, Canada). The 2003 event that was reported by Grenfell et Putkonen (2008) was detected by the thresholds. Other events in the years 1990 and 2000’s were detected with these thresholds. These events all follow periods where the air temperature were warm and were followed by a quick drop in air temperature which could be used to validate the presence of ice layer within the snowpack. Nonetheless, without in-situ validation, these events can not be confirmed

    Earth remote sensing with SMOS, Aquarius and SMAP missions

    Get PDF
    The first three of a series of new generation satellites operating at L-band microwave frequencies have been launch in the last decade. L-band is particularly sensitive to the presence of water content in the scene under observation, being considered the optimal bandwidth for measuring the Earth's global surface soil moisture (SM) over land and sea surface salinity (SSS) over oceans. Monitoring these two essential climate variables is needed to further improve our understanding of the Earth's water and energy cycles. Additionally, remote sensing at L-band has been proved useful for monitoring the stability in ice sheets and measuring sea ice thickness. The ESA's Soil Moisture and Ocean Salinity (SMOS, 2009-2017) is the first mission specifically launched to monitor SM and SSS. It carries on-board a novel synthetic aperture radiometer with multi-angular and full-polarization capabilities. NASA's Aquarius (2011-2015) was the second mission, devoted to SSS monitoring with a combined real aperture radiometer/scatterometer system that allows correcting for sea surface roughness. NASA's Soil Moisture Active Passive (SMAP, 2015-2018) is the second mission dedicated to measure SM. It carries on-board a real aperture full-polarimetric radiometer and a synthetic aperture radar (SAR) for enhanced spatial resolution and freeze/thaw detection. This Ph.D. Thesis is focused on analyzing the geophysical information that can be obtained from L-band SMOS, Aquarius and SMAP observations. The research activities are structured as follows: -Inter-comparison of radiometer brightness temperatures at selected targets. A novel methodology to measure the consistency between SMOS and Aquarius radiometric data over the entire dynamic range of observations (land, ice and ocean) is proposed. It allows detecting spatial/temporal differences or biases without latitudinal limitations neither cross-overs. This is a necessary step to combine observations from different instruments in a long term dataset for environmental, meteorological, hydrological or climatological studies. -Ice thickness effects on passive remote sensing of Antarctic continental ice. The relationship between Antarctic ice thickness spatial variations and changes detected by SMOS and Aquarius measurements is explored. The emissivity of Antarctica is analyzed to disentangle the role of the geophysical contributions (snow layers at different depths and subglacial lakes) to the observed signal. The stability of the L-band signal in the East Antarctic Plateau, calibration/validation site for microwave satellite missions, is assessed. -Microwave/optical synergy for multi-scale soil moisture sensing. The relationship of SM and land surface temperature (LST) dynamics is evaluated to better understand the fundamental SM-LST link through evapotranspiration and thermal inertia physical processes. A new approach to measure the critical soil moisture from time-series of spaceborne SM and LST is proposed. The synergistic use of SMOS SM and remotely sensed LST for refining SM disaggregation algorithms is also analyzed. -Comparison of passive and active microwave vegetation parameters. Recent research has shown that microwave vegetation opacity, sensitive to biomass and water content, and albedo, related to canopy structure, can be retrieved from passive L-band observations. The relationships between these two parameters and radar-derived vegetation descriptors have been explored using airborne observations from the SMAP Validation Experiment 2012 (SMAPVEX12). The obtained relations could allow for improved SM retrievals in active-passive systems, and also to estimate the vegetation properties at high resolution using SAR observations. The Ph.D. Thesis has been developed within the activities of the Barcelona Expert Centre (BEC). The presented results contribute to the use of L-band remote sensing in different scientific disciplines such as climate, cryosphere, hydrology and ecology.Els primers tres d'una sèrie de satèl·lits de nova generació funcionant a la banda L han sigut llançats a l'última dècada. La banda L es molt sensible a la presència d'aigua a l'escena observada, sent considerada òptima per mesurar la humitat del sòl (SM) i la salinitat del mar (SSS) de manera global a la superfície de la Terra. Monitoritzar aquestes dues variables climàtiques essencials es necessari per millorar el nostre coneixement dels cicles de l'aigua i l'energia. La teledetecció a banda L també ha sigut útil per monitoritzar l'estabilitat de les capes de gel i mesurar el gruix de gel marí. La missió Soil Moisture and Ocean Salinity (SMOS, 2009-2017) de l'ESA és la primera específicament llançada per monitoritzar SM i SSS. Porta un nou radiòmetre d'apertura sintètica amb capacitat multiangular i polarització completa. La missió Aquarius (2011-2015) de la NASA va ser la segona, dedicada a monitoritzar SSS amb un sistema de radiòmetre/escateròmetre d’apertura real que permet corregir la rugositat de la superfície del mar. La missió Soil Moisture Active Passive (SMAP, 2015-2018) de la NASA és la segona dedicada a mesurar SM. Porta un radiòmetre d'apertura real i polarització completa i un radar d'apertura sintètica (SAR) per una millor resolució espaial i detecció de congelació/descongelació. Aquesta tesi està enfocada en analitzar la informació geofísica que pot obtenir-se de les observacions a banda L d'SMOS, Aquarius i SMAP. La seva investigació està estructurada com: -Intercomparació de temperatures de brillantor en zones seleccionades. Es proposa un nou mètode per mesurar la consistència entre les dades radiomètriques d'SMOS i Aquarius sobre el rang dinàmic complet d'observacions (terra, gel, oceà). Això permet detectar diferències espaials/temporals o biaixos sense limitacions latitudinals ni creuaments. Aquest pas es necessari per combinar observacions de diferents instruments en un llarg conjunt de dades per estudis mediambientals, hidrològics o climatològics. -Efecte de gruix de gel en teledetecció de gel continental a l'Antàrtida. S'explora la relació entre les variacions espaials del gruix de gel antàrtic i els canvis detectats a les mesures d'SMOS i Aquarius. L'emissivitat de l'Antàrtida es analitzada per discernir el rol de les contribucions geofísiques (capes de gel a diferents profunditats i llacs subglacials) al senyal observat. S'avalua l'estabilitat del senyal a banda L sobre la zona est de l'altiplà antàrtic, lloc per calibratge/validació de satèl·lits de microones. -Sinèrgia de microones/òptic per teledetecció de SM multiescala. S'avalua la correlació entre la SM i la temperatura de la superfície del sòl (LST) per entendre millor la relació SM-LST a través de processos físics d'evapotranspiració i inèrcia tèrmica. Es proposa un nou mètode per mesurar la humitat crítica utilitzant sèries temporals de SM i LST de satèl·lit. S'analitza l'ús de la SM de SMOS amb la LST de teledetecció per refinar algorismes de desagregació de SM. -Comparació de paràmetres passius i actius de microones relatius a la vegetació. Recent investigació ha mostrat que l'opacitat, sensible a la biomassa i el contingut d'aigua, i l'albedo, relacionat amb l'estructura, poden ser recuperats d'observacions passives a banda L. S'exploren les relacions entre aquests dos paràmetres i estimadors de vegetació derivats de radar utilitzant les observacions d'avió de l'experiment de validació d'SMAP 2012 (SMAPVEX12). Les relacions obtingudes podrien permetre millors recuperacions de SM en sistemes actius/passius i estimar les propietats de la vegetació a alta resolució utilitzant mesures de SAR. La tesi s'ha desenvolupat dins les activitats del Barcelona Expert Centre (BEC). Els resultats presentats contribueixen a l'ús de la banda L a diferents disciplines científiques com la climatologia, la criosfera, la hidrologia i l'ecologia

    Phenomenology of the detection of ultra-high energy cosmic rays and neutrinos using the radio technique

    Get PDF
    Ultra-high energy cosmic rays are particles that have energies up to 1020 and beyondd and that arrive to the Earth after travelling the Universe. These energies are more than one million times the energies availably by means of man-made accelerators. Cosmic rays pose several questions that remain unanswered, such as which is their composition at ultra-high energies, which are their sources (the regions of the Universe where they are produced), how they are accelerated, or how they interact with the medium while they propagate towards the Earth, etc. The existence of ultra-high energy cosmic rays that are protons or charged nuclei indicates that the production of neutrinos because of the interactions of the cosmic rays, limiting the distance the ultra-high energy cosmic rays can reach (GZK effect). On the other hand, neutrinos, being particles that interact only via weak force and with cross sections about 107 smaller than hadronic cross sections, can come from the edge of the Universe without deviating or interacting. This makes them extraordinary cosmic messengers. The detection methods of ultra-high energy cosmic rays and neutrinos involve the creation of particle showers from the interaction of the cosmic ray with a particle in a medium (atmosphere or ice, for instance). These showers are measured with detectors such as water tanks provided with photomultipliers, or fluorescence telescopes. Through the measurable quantities of a shower several properties of the initial particle can be inferred, like the energy, the type of particle, the arrival direction... One of the detection methods is the radio technique. This technique began to be developed in the 1960s, reaching some promising first results, but the limitations of the electronics at the time forced the research to stop. In the last years, and thanks to the advances in electronics, that now allows the measuring of voltages with temporal precision below the nanosecond, the radio technique is witnessing a renaissance, with experiments as ANITA, LOFAR, CODALEMA, ARA or ARIANNA. The basic idea of the radio technique is the following. When a cosmic ray or a neutrino collides with a material medium in the Earth, the resulting shower contains charge
    corecore