285 research outputs found

    Auszug aus Forschungstransferkatalog 2004: Medizinische FakultÀt

    Get PDF
    Der vorliegende Auszug aus dem Tranferkatalog liefert ihren Partnern und Interessenten im Sinne eines Angebotes Information ĂŒber aktuelle ForschungsaktivitĂ€ten, mögliche Transfer-, Dienst- und Beratungsleistungen und gibt schließlich Auskunft ĂŒber technische Ausstattung dieser Bereiche

    Simulations of peptides, proteins and biomembranes with Molecular Fragment Dynamics (MFD)

    Get PDF
    Die dissipative Partikeldynamik (DPD) ist eine etablierte mesoskopische Simulationsmethode fĂŒr komplexe Fluidsysteme, deren Partikel geeignete Fluidelemente reprĂ€sentieren. Dabei werden die konservativen KrĂ€fte zwischen Partikelpaaren durch jeweilige isotrope Repulsionsparameter quantifiziert. Die molekulare Fragmentdynamik (MFD) ist eine DPD-Variante, die kleine MolekĂŒle als DPD-Partikel definiert. GrĂ¶ĂŸere MolekĂŒle werden dann aus Partikel-„Fragmenten“ zusammengesetzt, die ĂŒber harmonische Federn verbunden sind. Die MFD-Methode wurde bereits erfolgreich fĂŒr die Untersuchung von amphiphilen Polymeren, Mikroemulsionen und nichtionischen Tensiden eingesetzt. Ziel der vorliegenden Arbeit ist es, eine Erweiterung und Validierung des MFD-Ansatzes fĂŒr die Simulation biomolekularer Systeme mit Membranen, Peptiden oder Proteinen zu realisieren. Dazu wird zunĂ€chst ein Satz von MFD-Fragmenten definiert, der eine geeignete Fragmentierung der in den Biomembranen auftretenden Phospholipide sowie der die Peptide/Proteine konstituierenden AminosĂ€uren ermöglicht. FĂŒr die Beschreibung der jeweiligen fragmentbasierten MolekĂŒltopologie wird eine neue einzeilige Textnotation (fragment SMILES oder kurz fSMILES) eingefĂŒhrt, die sich an der bekannten SMILES-Kodierung orientiert. Die DPD-Repulsionsparameter fĂŒr alle auftretenden Fragmentpaare werden mit Molekulardynamiksimulationen bestimmt und mit einer neu entwickelten Verwaltungsapplikation dokumentiert. Ein Ad-hoc-Konzept fĂŒr die BerĂŒcksichtigung elektrostatischer Ladungen und KrĂ€fte in MFD-Simulationen wird vorgeschlagen, getestet und eingesetzt. Speziell fĂŒr Peptide und Proteine werden harmonische FederkrĂ€fte zwischen den RĂŒckrad-Fragmenten implementiert, die eine Stabilisierung ihrer rĂ€umlichen 3D-Struktur mit variablen FlexibilitĂ€tsgraden ermöglichen, da die isotropen DPD-Partikelwechselwirkungen die tatsĂ€chlichen rĂ€umlich-gerichteten atomaren Wechselwirkungen prinzipiell nicht adĂ€quat widerspiegeln. FĂŒr die praktische DurchfĂŒhrung der biomolekularen Simulationen wird die MFD-Simulationssoftware MFD-FormulaOne mit umfangreichen neu entwickelten Funktionsbibliotheken und (Peptid-/Protein-)Editoren erweitert. Dabei wird nach Möglichkeit auf bestehende Open-Source-Bibliotheken (CDK, Jmol, BioJava) aufgesetzt. Das erweiterte Simulationssystem ermöglicht schließlich eine vollstĂ€ndig automatisierte Verarbeitung der in „Protein-Data-Bank“-EintrĂ€gen enthaltenen topologischen und rĂ€umlichen Peptid-/Protein-Information. Zur ersten Validierung der erweiterten Software werden zunĂ€chst die Polyoxyalkylethertenside C6E6, C10E6, C12E_6 und C16E6 an einer Wasser-Luft-GrenzflĂ€che simuliert. Die erhaltenen nanoskaligen Strukturen im thermodynamischen Gleichgewicht, die berechneten OberflĂ€chenspannungen sowie die Ergebnisse fĂŒr die Mizellenbildung weisen eine gute Übereinstimmung mit experimentellen Ergebnissen auf. FĂŒr die Untersuchung von Biomembranen werden geeignete Fragmentierungsschemata fĂŒr alle auftretenden Phospholipide erarbeitet. Die Simulation von 1,2-Dimyristoyl-sn-glycero-3-phosphatidylcholin-(DMPC)-, Endoplasmatischen-Retikulum-(ER)-, Mitochondrium- und Plasma-Modellmembranen fĂŒhrt zu stabilen Doppelschichten mit Geometrien, die experimentellen Untersuchungen gut entsprechen, wobei auch die bekannten Lipid-Fluktuationen zwischen den beiden Schichten der Doppelmembranen auftreten. Mizellenbildung sowie spontane Vesikelbildung können fĂŒr alle untersuchten Membrantypen simuliert werden. Die Fusion eines DMPC-Vesikels mit einer DMPC-Membran wird zudem erfolgreich dargestellt. Die flexible rĂ€umliche Stabilisierung des ProteinrĂŒckgrads mit harmonischen FederkrĂ€ften wird fĂŒr das hantelförmige Calmodulin eingehend untersucht: Dazu werden Simulationsserien mit unterschiedlichen FederkrĂ€ften durchgefĂŒhrt und die dazu gehörenden rĂ€umlichen Proteingeometrien ausgewertet. Es zeigt sich, dass die langreichweitigen FederkrĂ€fte in erster Linie fĂŒr die Aufrechterhaltung der 3D-Struktur entscheidend sind. Die StabilitĂ€t einer Protein-QuartĂ€rstruktur wird mittels einer MFD-Langzeitsimulation fĂŒr die Aggregation der Untereinheiten des HĂ€moglobin-Tetramers gezeigt. Dies belegt, dass die MFD-Methode die gemittelte Wechselwirkung zwischen ProteinoberflĂ€chen adĂ€quat beschreiben kann. FĂŒr das Studium der Wechselwirkung von Peptiden/Proteinen und molekularen OberflĂ€chen werden zwei Modellsysteme untersucht. Zum einen wird die bekannte destruktive Wirkung des Pflanzendefensins Kalata B1 auf eine biologische Plasmamembran erfolgreich simuliert und die Struktur auftretender Membranporen ermittelt. Zum anderen kann die Wechselwirkung von histidinhaltigen Peptiden und Proteinen mit einer technisch relevanten Zinkrizinoleatschicht die postulierte AffinitĂ€t des Zinkrizinoleats zu stickstoffhaltigen MolekĂŒlen aufzeigen. Zusammenfassend kann die in dieser Arbeit erweiterte MFD-Methode als neue Simulationstechnik fĂŒr biomolekulare Systeme gewertet werden, die als mesoskopisch-grobkörniges Verfahren fĂŒr geeignete Fragestellungen einen um GrĂ¶ĂŸenordnungen verringerten Rechen- und Zeitaufwand gegenĂŒber der atomistischen Molekulardynamik ermöglicht.Dissipative Particle Dynamics (DPD) is a well-established mesoscopic simulation method for complex fluid systems whose particles are represented by adequate fluid elements. The conservative forces between particle pairs are quantified by particular isotropic repulsion parameters. Molecular Fragment Dynamics (MFD) is a DPD variant that utilizes small molecules as its particles where larger molecules are assembled with these particle ‘fragments’ connected by harmonic springs. The MFD technique has already been successfully applied to study amphiphilic polymers, microemulsions and non-ionic surfactants. This thesis aims at extending and validating the MFD approach for the simulation of biomolecular systems containing membranes, peptides and proteins. At first a set of MFD fragments is defined that allows an adequate fragmentation of all membrane relevant phospholipids as well as the amino acids that set up peptides and proteins. For a description of a particular fragment-based molecule topology a new single-line text notation (denoted fragment SMILES or fSMILES) is introduced that is similar to the well-known SMILES code. The DPD repulsion parameters for all fragment pairs are determined by molecular dynamics simulations and documented by a newly developed management application. An ad-hoc concept for the consideration of electrostatic charges and forces in MFD simulations is proposed, tested and applied. For peptides and proteins specific harmonic forces between backbone fragments are implemented that enable a stabilisation of their spatial 3D structures with variable degrees of flexibility since the isotropic DPD particle interactions cannot account for the true spatially directed atomic interactions. In order to practically realize biomolecular simulations the MFD simulation software MFD-FormulaOne is extended with new function libraries and peptide/protein editors where already existing open-source libraries (CDK, Jmol, BioJava) are utilized according to possibility. The extended simulation system allows a completely automated processing of the topological and spatial peptide/protein information contained in Protein Data Bank (PDB) files. For an initial validation of the extended software the polyoxyalkylether surfactants C6E6, C10E6, C12E6 and C16E6 are simulated at a water-air interface. The resulting nanoscale structures at thermodynamic equilibrium, the calculated surface tensions and the observed micelle formations are in good agreement with experimental findings. In order to study biomembranes adequate fragmentation schemata for all occurring phospholipids are developed. The simulation of 1,2-Dimyristoyl-sn-glycero-3-phosphatidylcholin (DMPC), Endoplasmic reticulum (ER), mitochondrion and plasma model membranes lead to stable bilayers with geometries that correspond to experimental results. The well-known lipid fluctuations between both membrane layers do appear. Micelle formation as well as spontaneous vesicle formation can be demonstrated for all studied membrane types. The fusion of a water-filled DMPC vesicle with a DMPC bilayer membrane is successfully simulated. The flexible spatial stabilization of the protein backbones with harmonic forces is studied with the dumbbell-shaped Calmodulin: Simulation series with different forces are performed and the corresponding spatial protein geometries are analysed. It is shown that the long-range forces are responsible for the preservation of the 3D structure in the first place. The stability of a protein quaternary structure is demonstrated by a long-term MFD simulation of the aggregation of the subunits of the Hemoglobin tetramer. This shows that the MFD method may successfully describe the average interaction between protein surfaces. To analyse the interaction between peptides/proteins and molecular surfaces two model systems are investigated: First the well-known destructive behaviour of Kalata B1 plant defensins with biological plasma membranes is successfully simulated and the structure of the occurring membrane pores is characterized. Secondly the interaction of Histidine containing peptides and proteins with a technical relevant zinc ricinoleate layer shows the postulated affinity of zinc ricinoleate to nitrogen containing molecules. In summary it is shown that the extended MFD method may be regarded as a new simulation technique for biomolecular systems. Where it applies the mesoscopic coarse-grained MFD method may reduce the computational costs by orders of magnitude compared to atomistic molecular dynamics

    Kompendium Forschung und Entwicklung 2022/2023

    Get PDF
    • 

    corecore