2,047 research outputs found

    Efficient Semantic-based Content Search in P2P Network

    Get PDF
    Most existing Peer-to-Peer (P2P) systems support only title-based searches and are limited in functionality when compared to today’s search engines. In this paper, we present the design of a distributed P2P information sharing system that supports semantic-based content searches of relevant documents. First, we propose a general and extensible framework for searching similar documents in P2P network. The framework is based on the novel concept of Hierarchical Summary Structure. Second, based on the framework, we develop our efficient document searching system, by effectively summarizing and maintaining all documents within the network with different granularity. Finally, an experimental study is conducted on a real P2P prototype, and a large-scale network is further simulated. The results show the effectiveness, efficiency and scalability of the proposed system.Singapore-MIT Alliance (SMA

    Listening to features

    Get PDF
    This work explores nonparametric methods which aim at synthesizing audio from low-dimensionnal acoustic features typically used in MIR frameworks. Several issues prevent this task to be straightforwardly achieved. Such features are designed for analysis and not for synthesis, thus favoring high-level description over easily inverted acoustic representation. Whereas some previous studies already considered the problem of synthesizing audio from features such as Mel-Frequency Cepstral Coefficients, they mainly relied on the explicit formula used to compute those features in order to inverse them. Here, we instead adopt a simple blind approach, where arbitrary sets of features can be used during synthesis and where reconstruction is exemplar-based. After testing the approach on a speech synthesis from well known features problem, we apply it to the more complex task of inverting songs from the Million Song Dataset. What makes this task harder is twofold. First, that features are irregularly spaced in the temporal domain according to an onset-based segmentation. Second the exact method used to compute these features is unknown, although the features for new audio can be computed using their API as a black-box. In this paper, we detail these difficulties and present a framework to nonetheless attempting such synthesis by concatenating audio samples from a training dataset, whose features have been computed beforehand. Samples are selected at the segment level, in the feature space with a simple nearest neighbor search. Additionnal constraints can then be defined to enhance the synthesis pertinence. Preliminary experiments are presented using RWC and GTZAN audio datasets to synthesize tracks from the Million Song Dataset.Comment: Technical Repor
    • …
    corecore